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RELATIONS BETWEEN CUMULANTS IN NONCOMMUTATIVE

PROBABILITY

OCTAVIO ARIZMENDI, TAKAHIRO HASEBE, FRANZ LEHNER, AND CARLOS VARGAS

Abstract. We express classical, free, Boolean and monotone cumulants in terms of each other,
using combinatorics of heaps, pyramids, Tutte polynomials and permutations. We completely
determine the coefficients of these formulas with the exception of the formula for classical
cumulants in terms of monotone cumulants whose coefficients are only partially computed.

1. Introduction

Cumulants provide a combinatorial description of independence of random variables. While
Fourier analysis is the tool of choice for most problems in classical probability, cumulants are
an indispensable ingredient for many investigations in noncommutative probability. An in-
triguing aspect of noncommutative probability is the existence of several kinds of independence
[Voi85, SW97, Mur01, Leh04] with corresponding cumulants introduced in [Voi85, Spe94, SW97,
HS11b, Leh04] sharing many common features. In a certain sense (which can be made precise,
see [Spe97, Mur02]) these are the only “natural” notions of independence and the combinatorics
of cumulants in particular show very close analogies between the different theories. Roughly
speaking, one can pass from classical to free/boolean/monotone independence by replacing the
lattice of all set partitions by noncrossing/interval/monotone partitions respectively.

On the other hand, the generating functions of cumulants correspond to various transforms
of probability measures and one major application is the calculation of walk generating func-
tions (or Green’s functions) of certain graph products, see [Woe00] for details of the following
concepts. The cartesian product of graphs corresponds to classical convolution as observed
by Polya [Pól21], the free product of graphs corresponds to Voiculescu’s free convolution
[Voi86, Woe86, CS86] and the star product of graphs [Woe00, Section 9.7] corresponds to
Boolean convolution [Oba04]. The comb product entered the graph theory literature rather
recently [KP04] (a special case having been considered earlier in physics, see [WH86]) in order
to construct an example of a recurrent random walk with so-called finite collision property. It
was observed in [ABGO04] that this graph product corresponds to monotone convolution.

The starting point of this paper is the following relations between (univariate) classical
((κn)n≥1), free ((rn)n≥1) and Boolean ((bn)n≥1) cumulants, shown by the third author [Leh02]
some time ago:

bn =
∑

π∈NCirr(n)

rπ,(1.1)

rn =
∑

π∈Pconn(n)

κπ,(1.2)

bn =
∑

π∈Pirr(n)

κπ.(1.3)
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where NCirr(n), Pconn(n), Pirr(n) are, respectively, the sets of irreducible noncrossing partitions,
connected partitions and irreducible partitions1. Relation (1.2) was used in [BBLS11] to attack
the problem of free infinite divisibility of the normal law.

We denote by Kn, Hn, Bn, Rn the multivariate classical, monotone, Boolean and free cu-
mulants respectively. The univariate cumulants κn, hn, bn, rn are obtained by evaluating the
multivariate cumulants at n copies of a single variable.

Relation (1.1) was extended by Belinschi and Nica in [BN08] to the case of multivariate
cumulants Bn, Rn. In addition, they obtained the inverse formula:

(1.4) Rn =
∑

π∈NCirr(n)

(−1)|π|−1Bπ.

It is interesting to notice the similarity to formula (4) in [LM11]. We will give a different proof
of (1.4) in Section 4 which clarifies this coincidence.

The extensions of (1.2) and (1.3) to the multivariate case can be shown by using the same
proofs as in [Leh02] for the univariate case, see below for details. An interesting inverse formula
for (1.3) was proved recently by M. Josuat-Vergès [JV13], expressing classical cumulants in
terms of free cumulants:

(1.5) κn =
∑

π∈Pconn(n)

(−1)|π|−1TG(π)(1, 0)rπ,

where G(π) is the crossing graph of π and TG(π) its Tutte polynomial. The proof of (1.5) in
[JV13] is also valid for the multivariate case.

The purpose of the present article is to complete the picture for the relations between classical,
Boolean, free and monotone cumulants, extending some identities to the multivariate case. More
precisely, we are able to prove the following cumulant identities.

Theorem 1.1. The following identities hold for multivariate cumulants:

Bn =
∑

π∈Mirr(n)

1

|π|!Hπ =
∑

π∈NCirr(n)

1

τ(π)!
Hπ,(1.6)

Rn =
∑

π∈Mirr(n)

(−1)|π|−1

|π|! Hπ =
∑

π∈NCirr(n)

(−1)|π|−1

τ(π)!
Hπ,(1.7)

where Mirr(n) is the set of irreducible monotone partitions.

Theorem 1.2. The following identities hold for univariate cumulants:

hn =
∑

π∈NCirr(n)

απrπ,(1.8)

hn =
∑

π∈NCirr(n)

(−1)|π|−1απbπ,(1.9)

hn =
∑

π∈Pirr(n)

απ̄κπ,(1.10)

where σ̄ ∈ NC(n) denotes the noncrossing closure of σ ∈ P(n) and απ is the linear part of the
number of nonincreasing labellings of the nesting forest of π (which in the case of irreducible
partitions consists of precisely one tree). This quantity will be defined rigorously in Section 5.

Remark 1.3. Calculations indicate that a multivariate analogue of Theorem 1.2 also holds,
but at present we do not know how to prove it.

The proof of the Boolean-to-classical cumulant formula follows the techniques of the proof
(1.5) used in [JV13].

1Partitions and notations are defined in Section 2.
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Theorem 1.4.

(1.11) Kn =
∑

π∈Pirr(n)

(−1)|π|−1TG̃(π)(1, 0)Bπ,

where G̃(π) is the anti-interval graph of π and TG̃(π) is its Tutte polynomial (see Section 6).

Alternatively, the values of the Tutte polynomials in (1.5) and (1.11) can be interpreted as
certain pyramids in the sense of Cartier-Foata, see Section 6 for details.

Yet another interpretation expresses classical cumulants in terms of Boolean cumulants via
permutation statistics.

Theorem 1.5. Denote by Cn the set of cyclic permutations of order n and let cruns(σ) be the
set partition defined by the cycle runs of σ (see Section 7). Then

(1.12) Kn =
∑

σ∈Cn

(−1)#cruns(σ)−1Bcruns(σ).

There is a bijection between Cn and {σ ∈ Sn | σ(1) = 1}: given π = (1, π(1), . . . , πn−1(1)) ∈
Cn, we define a permutation σ(1) = 1, σ(k) = πk−1(1), 2 ≤ k ≤ n. Then we may rewrite
Theorem 1.5 into

Corollary 1.6. Let Sn be the set of permutations of order n, let runs(σ) be the set partition
associated to the runs of σ ∈ Sn and let d(σ) be the number of descents of σ ∈ Sn (see Section
7). Then

(1.13) Kn =
∑

σ∈Sn

σ(1)=1

(−1)d(σ)Bruns(σ).

Understanding the coefficients of the remaining, monotone-to-classical cumulant formula

Kn =
∑

π∈P(n)

β(π)Hπ,

seems to require a more detailed treatment. We compute β for some particular cases and
list some of its properties. In particular, we show that the coefficients β only depend on an
anti-interval digraph, and moreover we show that

Theorem 1.7. (1) If π is reducible, then β(π) = 0.
(2) If π is irreducible and has no nestings, then β(π) coincides with the coefficient (−1)|π|−1TG(π)(1, 0)

from formula (1.5).

(3) If π ∈ NCirr and has depth 1 or 2, then β(π) = (−1)|π|−1

|π|
.

Thus various combinatorial objects contribute to the proofs and the paper is organized accord-
ingly. Types of partitions and notation are defined in Section 2. We collect some combinatorial
properties of monotone partitions in Section 3. Theorems 1.1, 1.2, 1.4, 1.5, 1.7 are proved in
Sections 4, 5, 6, 7, 8, respectively.

2. Definitions and preliminary results

Concepts on partitions and ordered partitions are summarized below, first let us recall some
well known facts from the theory of posets (partially ordered sets). For details on the latter
the standard reference is [Sta12].

Proposition 2.1 (Principle of Möbius inversion). On any poset (P,≤) there is a unique Möbius
function µ : P × P → Z such that for any pair of functions f, g : P → C (in fact any abelian
group in place of C) the identity

(2.1) f(x) =
∑

y≤x

g(y)
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holds for every x ∈ P if and only if

(2.2) g(x) =
∑

y≤x

f(y)µ(y, x).

In particular, if, given f , two functions g1 and g2 satisfy (2.1), then g1 and g2 coincide.

Definition 2.2. Let P be a poset. A map c : P → P is called closure operator if:

(1) it is increasing, i.e., x ≤ c(x) for every x ∈ P ;
(2) it is order preserving, i.e., if x ≤ y then c(x) ≤ c(y);
(3) it is idempotent, i.e., c ◦ c = c.

In the present paper we will be concerned with posets (mostly lattices) of set partitions
exclusively and make use of the noncrossing closure and interval closure defined next.

Definition 2.3. (1) A partition of a set is a decomposition into disjoint subsets, called blocks.
The set of partitions of the set [n] := {1, . . . , n} is denoted by P(n). It is a lattice un-
der refinement order with maximal element {[n]} denoted by 1̂n and minimal element
{{1}, . . . , {n}} is denoted by 0̂n.
We write P =

⋃
n≥1P(n) and similar notations will be used such as NC.

(2) Any partition defines an equivalence relation on [n] and vice versa. Given π ∈ P(n), i ∼π j
holds if and only if there is a block V ∈ π such that i, j ∈ V .

(3) A partition π ∈ P(n) is noncrossing if there is no quadruple of elements 1 ≤ i < j < k <
l ≤ n such that i ∼π k, j ∼π l and i 6∼π j. The noncrossing partitions of order n form a
sub-lattice which we denote by NC(n).

(4) For two blocks V,W of a partition, we say V is an inner block of W or equivalently V nests
inside W or W is an outer block of V if there are i, j ∈ W such that i < k < j for each
k ∈ V .

(5) The depth of a block V of a noncrossing partition is the number of blocks (including V
itself) which graphically cover the block V . The depth of a noncrossing partition is the
maximal depth among all the blocks. For example 1̂n has depth 1.

(6) A block V of a partition is called an interval block if V is of the form V = {k, k+1, . . . , k+l}
for k ≥ 1 and 0 ≤ l ≤ n− k. We denote by IB(n) the set of all interval blocks of [n].

(7) An interval partition is a partition π for which every block is an interval. The set of interval
partitions of [n] is denoted by I(n) and is a sub-lattice of P(n). Sometimes these are called
linear partitions and in fact they are in obvious bijection with compositions of a number n,
i.e., sequences of integers (k1, k2, . . . , kr) such that ki > 0 and k1 + k2 + · · ·+ kr = n.

(8) The noncrossing closure π̄ of a partition π is the smallest noncrossing partition which
dominates π.

(9) A partition π is connected if its noncrossing closure is equal to the maximal partition 1̂n,
or, equivalently, the diagram of π is a connected graph. The set of connected partitions is
denoted by Pconn(n).

(10) The connected components of a partition π are the connected sub-partitions of π, i.e., the
partitions induced on the blocks of the noncrossing closure π̄.

(11) The interval closure π̂ of a partition π is the smallest interval partition which dominates π.
(12) A partition π ∈ P(n) is irreducible if its interval closure is equal to the maximal partition

1̂n. For a noncrossing partition of [n] this is equivalent to the property that 1 ∼π n. Every
partition π can be “factored” into irreducible factors which we denote by π = π1 ∪ · · · ∪ πr.
The factors πj are sub-partitions induced on the blocks of the interval closure π̂.
The sets of irreducible partitions and irreducible noncrossing partitions are respectively

denoted by Pirr(n) and NCirr(n).

Different types of partitions are shown in the following figure.
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connected irreducible noncrossing

Figure 1. Typical partitions

Definition 2.4. (1) An ordered partition is a pair (π, λ) of a set partition π and a linear
order λ on its blocks. An ordered partition can be regarded as a sequence of blocks:
(π, λ) = (V1, . . . , Vk) by understanding that Vi <λ Vj iff i < j.

(2) Amonotone partition is an ordered partition (π, λ) with π ∈ NC(n) such that, for V,W ∈ π,
V >λ W whenever V is an inner block of W .

(3) An ordered partition (π, λ) is irreducible if π is irreducible. Let Mirr(n) denote the set of
irreducible monotone partitions.

Positivity of random variables or states is irrelevant in this paper, our treatment is purely

algebraic. One reason for this is the introduction of a formal random variable X̃ in (4.12) whose
positivity is not guaranteed. Let (A, ϕ) be a pair of a unital algebra over C and a unital linear
functional on A, i.e. ϕ(1A) = 1.

Let An (resp., an) be one of the cumulant functionals Bn, Hn, Rn (resp., bn, hn, rn). Given
a partition π ∈ P(n) and X,Xi ∈ A, we define the associated multivariate and univariate
partitioned cumulant functionals

Aπ(X1, . . . , Xn) :=
∏

V ∈π

A|V |(XV ), aπ(X) := Aπ(X, . . . , X) =
∏

V ∈π

a|V |(X),

where we use the notation
A|V |(XV ) := Am(Xv1 , . . . , Xvm)

for a block V = {v1, . . . , vm}, v1 < · · · < vm. The linear functional ϕ gives rise to the multilinear
functional

(X1, . . . , Xn) 7→ ϕ(X1 · · ·Xn)

on An for each n and ϕπ is defined analogously.
The following formulas implicitly define the classical, free, Boolean and monotone cumulants.

Theorem 2.5.

ϕπ(X1, · · · , Xn) =
∑

σ∈P(n)
σ≤π

Kσ(X1, . . . , Xn), [Sch47, Rot64](2.3)

ϕπ(X1, · · · , Xn) =
∑

σ∈NC(n)
σ≤π

Rσ(X1, . . . , Xn), [Spe94](2.4)

ϕπ(X1, · · · , Xn) =
∑

σ∈I(n)
σ≤π

Bσ(X1, . . . , Xn), [SW97](2.5)

ϕ(X1 · · ·Xn) =
∑

(σ,λ)∈M(n)

1

|σ|!Hσ(X1, . . . , Xn). [HS11a](2.6)

The multiplicative extension of the monotone case (2.6) is not very useful because the sum-
mand would depend on both σ, π (but if π is an interval partition, the summand does not
depend on σ; see the proof of Theorem 1.1 in Section 4).

Let µP , µNC, µI be the Möbius functions on the posets P,NC, I respectively. The values are

µP(0̂n, 1̂n) = (−1)n−1(n− 1)!, [Sch47, Rot64](2.7)

µNC(0̂n, 1̂n) = (−1)n−1Cn−1, [Kre72](2.8)

µI(0̂n, 1̂n) = (−1)n−1,(2.9)
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where Cn = 1
n+1

(
2n
n

)
is the Catalan number. The values µ(π, σ) for general intervals [π, σ]

are products of these due to the fact that in all lattices considered here any such interval is
isomorphic to a direct product of full lattices of different orders, see [DRS72, Spe94].

In fact it is easy to see that the lattice of interval partitions of order n is antiisomorphic
to the lattice of subsets of a set with n − 1 elements and formula (2.9) is equivalent to the
inclusion-exclusion principle.

From the Möbius principle we may express the classical, free and Boolean cumulants as

Kπ(X1, · · · , Xn) =
∑

σ∈P(n)
σ≤π

ϕσ(X1, . . . , Xn)µP(σ, π),(2.10)

Rπ(X1, · · · , Xn) =
∑

σ∈NC(n)
σ≤π

ϕσ(X1, . . . , Xn)µNC(σ, π),(2.11)

Bπ(X1, · · · , Xn) =
∑

σ∈I(n)
σ≤π

ϕσ(X1, . . . , Xn)µI(σ, π).(2.12)

Alternatively, univariate cumulants can be defined via generating functions as follows. Let
(mn)n≥1 be a sequence with m0 = 1 and F (z) =

∑∞
n=0

mn

n!
zn its exponential generating function

and M(z) =
∑∞

n=0mnz
n the ordinary generating function.

(1) The exponential generating function of the classical cumulants satisfies the identity
∞∑

n=1

κn

n!
zn = logF (z).

(2) The ordinary generating function of the free cumulants

R(z) =
∞∑

n=1

rnz
n

is called R-transform and satisfies the equivalent identities

1 +R(zM(z)) = M(z),(2.13)

M(z/(1 +R(z))) = 1 +R(z).(2.14)

(3) The ordinary generating function of the Boolean cumulants

B(z) =

∞∑

n=1

bnz
n

satisfies the identity

(2.15) M(z) =
1

1−B(z)
.

Our proofs make use of both the set partition machinery and multivariate versions of the
following generating function relations. Consider the following identities:

(2.16) 1 +R

(
z

1− B(z)

)
=

1

1−B(z)
, 1− B

(
z

1 + R(z)

)
=

1

1 +R(z)
.

The left hand identity is obtained by substituting (2.15) into (2.13); and the right hand identity
follows from (2.14) by taking reciprocals on both sides and substituting 1/M(z) = 1− B(z).

Define a map ˜ on the set of generating functions by setting R̃ = −B, B̃ = −R. This
map swaps the identities (2.16) and explains the occurrence of the factor (−1)|π|−1 in formulas

(1.4),(1.7) and (1.9). It turns out that H̃ = −H under this transformation, where H(z) is the
generating function of monotone cumulants. The details and the multivariate generalization of
this observation are worked out in Section 4.
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3. Counting monotone partitions

We want to count the number of monotone labellings of a noncrossing partition π, i.e., the
number of possible orders λ on the blocks of π such that (π, λ) becomes a monotone partition.
For this purpose it is convenient to map the nesting structure of noncrossing partitions to trees.

Definition 3.1. The nesting forest τ(π) of a noncrossing partition π with k blocks is the forest
of planar rooted trees on k vertices built recursively as follows.

(1) If π is an irreducible partition, then τ(π) is the planar rooted tree, whose vertices are
the blocks of π, the root being the unique outer block, and branches τ(πi) where πi are
the irreducible components of π without the outer block.

(2) If π has irreducible components π1, π2, . . . , πk, then τ(π) is the forest consisting of the
rooted trees τ(π1), τ(π2), . . . , τ(πk).

Figure 2. A noncrossing partition and its nesting forest

Every monotone labelling of the noncrossing partition π corresponds to an increasing labelling
of its nesting forest τ(π). For the enumeration of the latter the so-called tree factorial is useful.

Definition 3.2. The tree factorial t! of a finite rooted tree t is recursively defined as follows.
Let t be a rooted tree with n > 0 vertices. If t consists of a single vertex, set t! = 1. Otherwise
t can be decomposed into its root vertex and branches t1, t2, . . . , tr and we define recursively
the number

t! = n · t1! t2! · · · tr!.
The tree factorial of a forest is the product of the factorials of the constituting trees.

Proposition 3.3. (a) The number m(π) of monotone labellings of a noncrossing partition π
depends only on its nesting forest τ(π) and is given by

m(π) =
|π|!
τ(π)!

.

(b) The function w(π) = m(π)
|π|!

= 1
τ(π)!

is multiplicative, i.e., if π has irreducible components

π1, π2, . . . , πk, then

w(π) = w(π1)w(π2) · · ·w(πk).

Proof. (a) Here is an inductive proof of the well known fact that the number of increasing
labellings of a tree t is equal to |t|!/t!.
If the tree has only one vertex the claim is obviously true. So assume that there are at

least 2 vertices. The root must get the smallest label, so there is no choice. Then we have
to distribute the remaining labels among the branches t1, t2, . . . ,tr . There are

( |t| − 1

|t1| , |t2| , . . . , |tr|

)

possibilities to do so and by induction on each branch ti there are
|ti|!
ti!

monotone labellings.
Putting these together we obtain

( |t| − 1

|t1| , |t2| , . . . , |tr|

) |t1|!
t1!

|t2|!
t2!

· · · |tr|!
tr!

=
1

|t|
|t|!

t1!t2! · · · tr!
=

|t|!
t!
.

(b) is immediate from the definition of the tree factorial.
�
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From this we can rewrite the formula expressing moments in terms of monotone cumulants
(2.6) into

(3.1) ϕ(X1 · · ·Xn) =
∑

σ∈NC(n)

1

τ(σ)!
Hσ(X1, . . . , Xn).

We can count the number of monotone partitions as follows. Let IB(n, k) be a subset of
IB(n) defined by {V ∈ IB(n); |V | = k}. We notice that |IB(n, k)| = n− k + 1.

Proposition 3.4. |M(n)| = (n+1)!
2

.

Proof. There is a bijection Φ : M(n) →
(⋃n−1

k=1 M(k)× IB(n, n− k)
)
∪ {1̂n} defined by

Φ : (V1, . . . , V|π|) 7→ ((V1, . . . , V|π|−1), V|π|).

Now let an := |M(n)|. In view of the above bijection Φ, we have an = 1 +
∑n−1

k=1(k + 1)ak. By
calculating an − an−1, one gets the relation an = (n + 1)an−1 and so the result follows. �

4. Symmetries of generating functions and proof of Theorem 1.1

Proof of Theorem (1.6). The proof follows the same line as the proof of (1.1) in [Leh02] by a
simple application of the principle of Möbius inversion (Prop. 2.1).

We know that the Boolean cumulants are uniquely determined by the property that

ϕπ(X1, X2, . . . , Xn) =
∑

ρ∈I(n)
ρ≤π

Bρ(X1, X2, . . . , Xn)

for every π ∈ I(n). We define

B̂n =
∑

π∈Mirr(n)

1

|π|!Hπ =
∑

π∈NCirr(n)

1

τ(π)!
Hπ

and show that

ϕπ(X1, X2, . . . , Xn) =
∑

ρ∈I(n)
ρ≤π

B̂ρ(X1, X2, . . . , Xn),

which then implies B̂π = Bπ for all π ∈ I(n) by the Möbius principle.
First note that multiplicativity of the nesting tree factorial (Proposition 3.3(b)) implies that

B̂ρ =
∑

π∈M(n)
π̂=ρ

1

|π|!Hπ =
∑

π∈NC(n)
π̂=ρ

1

τ(π)!
Hπ.



RELATIONS BETWEEN CUMULANTS IN NONCOMMUTATIVE PROBABILITY 9

any interval partition ρ. Moreover given an interval partition π = {V1, V2, . . . , Vp} we have

ϕπ(X1, X2, . . . , Xn)

=
∑

σ1∈M(V1)

∑

σ2∈M(V2)

· · ·
∑

σp∈M(Vp)

1

|σ1|!
Hσ1

(XV1
)

1

|σ2|!
Hσ2

(XV2
) · · · 1

|σp|!
Hσp

(XVp
)

=
∑

σ1∈NC(V1)

∑

σ2∈NC(V2)

· · ·
∑

σp∈NC(Vp)

1

τ(σ1)!
Hσ1

(XV1
)

1

τ(σ2)!
Hσ2

(XV2
) · · · 1

τ(σp)!
Hσp

(XVp
)

=
∑

σ∈NC(n)
σ≤π

1

τ(σ)!
Hσ(X1, X2, . . . , Xn)

=
∑

ρ∈I(n)
ρ≤π

∑

σ∈NC(n)
σ̂=ρ

1

τ(σ)!
Hσ(X1, X2, . . . , Xn)

=
∑

ρ∈I(n)
ρ≤π

B̂ρ(X1, X2, . . . , Xn),

where the multiplicativity of the nesting tree factorial τ(σ)! was used again for the third equality.
�

We are going to show (1.7) and (1.4) by using generating functions. The latter was shown in
[BN08], but our proof is different. Let CJz1, . . . , zrK be the ring of formal power series on r free
indeterminates z1, . . . , zr. Let z denote the vector (z1, . . . , zr). For a vector of noncommutative
elements X = (X1, . . . , Xr), we introduce generating functions:

MX(z) := 1 +

∞∑

n=1

r∑

i1,...,in=1

ϕ(Xi1 · · ·Xin)zi1 · · · zin ,(4.1)

BX(z) :=
∞∑

n=1

r∑

i1,...,in=1

Bn(Xi1 , . . . , Xin)zi1 · · · zin ,(4.2)

RX(z) :=

∞∑

n=1

r∑

i1,...,in=1

Rn(Xi1, . . . , Xin)zi1 · · · zin ,(4.3)

HX(z) :=

∞∑

n=1

r∑

i1,...,in=1

Hn(Xi1 , . . . , Xin)zi1 · · · zin .(4.4)

We also introduce vectors of generating functions:

MX(z) := zMX(z) = (z1MX(z), . . . , zrMX(z)),(4.5)

HX(z) := zHX(z) = (z1HX(z), . . . , zrHX(z)).(4.6)

Lemma 4.1. The following identities hold.

BX(z)MX(z) = MX(z)− 1,(4.7)

RX(MX(z)) = MX(z)− 1.(4.8)

Proof. The first identity is a straightforward consequence of the Boolean moment-cumulant
formula. One has

BX(z)MX(z)

=




∞∑

p=1

r∑

i1,...,ip=1

Bp(Xi1, . . . , Xip)zi1 · · · zip




1 +

∞∑

q=1

r∑

j1,...,jq=1

ϕ(Xj1 · · ·Xjq)zj1 · · · zjq


 .
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On the right hand side, the coefficient of the term zk1 · · · zkn is equal to

Bn(Xk1 , . . . , Xkn) +

n−1∑

p=1

Bp(Xk1, . . . , Xkp)ϕ(Xkp+1
· · ·Xkn),

which, by virtue of the Boolean moment-cumulant formula, equals

Bn(Xk1, . . . , Xkn) +

n−1∑

p=1

∑

π∈I(n−p)

Bp(Xk1 , . . . , Xkp)Bπ(Xkp+1
, . . . , Xkn)

= Bn(Xk1 , . . . , Xkn) +
∑

σ∈I(n),σ 6=1̂n

Bσ(Xk1, . . . , Xkn)

= ϕ(Xk1 · · ·Xkn).

Formula (4.8) is the fundamental identity defining the multivariate R-transform, see [NS06,
Lecture 16]. �

For t ∈ R and X = (X1, . . . , Xr), let X(t) = (X1(t), . . . , Xr(t)) be a vector whose joint
distribution is characterized by

(4.9) Hn(Xi1(t), . . . , Xin(t)) = tHn(Xi1 , . . . , Xin), i1, . . . , in ∈ [r], n ≥ 1,

or equivalently

ϕ(Xi1(t) · · ·Xin(t)) =
∑

π∈M(n)

t|π|

|π|!Hπ(Xi1, . . . , Xin).

Let us denote

MX(t, z) := MX(t)(z),

MX(t, z) := zMX(t, z) = (z1MX(t, z), . . . , zrMX(t, z)).

Then the following differential equation holds as formal power series [HS11a]:

(4.10)
d

dt
MX(t, z) = HX(MX(t, z)), MX(0, z) = z.

Moreover, (MX(t, ·))t∈R becomes a flow on CJz1, . . . , zrK:

(4.11) MX(t+ s, z) = MX(t,MX(s, z)), t, s ∈ R,

which is proved by standard techniques from ordinary differential equations using the uniqueness
of the solution in CJz1, . . . , zrK.

Definition 4.2. For a vector X = (X1, . . . , Xr) ∈ Ar, let X̃ = (X̃1, . . . , X̃r) be a vector
satisfying the relation

(4.12) Rn(X̃i1 , . . . , X̃in) = −Bn(Xi1, . . . , Xin)

for any tuple (i1, . . . , in) ∈ [r]n.

Lemma 4.3. The following relations hold for any X and any tuple (i1, . . . , in):

(1) Bn(X̃i1, . . . , X̃in) = −Rn(Xi1 , . . . , Xin), or equivalently B
X̃
(z) = −RX(z);

(2) Hn(X̃i1 , . . . , X̃in) = −Hn(Xi1, . . . , Xin), or equivalently H
X̃
(z) = −HX(z).

Proof. (1) We will show that

(4.13) MX ◦M
X̃
= Id.

The definition (4.12) of X̃ reads R
X̃
(z) = −BX(z), so that

(4.14) −R
X̃
(z)MX(z) = MX(z)− 1
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from (4.7). Replace z by M
X̃
(z) and then (4.14) becomes

−
(
M

X̃
(z)− 1

)
MX(MX̃

(z)) = MX(MX̃
(z))− 1,

where the relation (4.8) was used for X̃. Hence, ziMX̃
(z)MX(MX̃

(z)) = zi for each i, implying
the claim (4.13). In particular, MX(MX̃

(z)) = 1
M

X̃
(z)

. Replacing z by M
X̃
(z) in (4.8), one

obtains RX(z) =
1

M
X̃
(z)

− 1, which coincides with −B
X̃
(z) thanks to (4.7) for X̃.

(2) The flow property (4.11) for t = 1, s = −1 reads MX ◦MX(−1) = Id, which together with

(4.13) implies that X(−1) = X̃ in distribution regarding ϕ. From (4.9) we get

Hn(X̃i1 , . . . , X̃in) = Hn(Xi1(−1), . . . , Xin(−1)) = −Hn(Xi1 , . . . , Xin).

�

Proof of Theorem 1.1(1.7). From (1.6) and Lemma 4.3, we obtain

−Rn(X1, . . . , Xn) = Bn(X̃1, . . . , X̃n) =
∑

π∈Mirr(n)

1

|π|!Hπ(X̃1, . . . , X̃n)

=
∑

π∈Mirr(n)

(−1)|π|

|π|! Hπ(X1, . . . , Xn).

�

Proof of (1.4). From the multi-variate version generalization of (1.1) and Lemma 4.3, we have
the following:

−Rn(X1, . . . , Xn) = Bn(X̃1, . . . , X̃n) =
∑

π∈NCirr(n)

Rπ(X̃1, . . . , X̃n)

=
∑

π∈NCirr(n)

(−1)|π|Bπ(X1, . . . , Xn).

�

Remark 4.4. NCirr(n) is a lattice and is isomorphic to NC(n− 1); however we can not apply
the Möbius inversion directly to the free-to-boolean formula (1.1) to get the boolean-to-free
formula (1.4) since it does not respect multiplicativity.

5. Colored trees and proof of Theorem 1.2

The concept of colored partitions was introduced by Lenczewski [Len12].

Definition 5.1. An N-colored partition of [n] is a pair (π, f), where π = {V1, . . . , Vk} is a
partition of [n] and f is a map from the set {V1, . . . , Vk} to [N ]. The set of noncrossing N -
colored partitions of [n] is denoted by NC(n,N). When i = f(V ), we say that V ∈ π is colored
by i.

Remark 5.2. An ordered partition of [n] is a |π|-colored partition (π, f) of [n] such that every
block has a different color.

We will express monotone cumulants in terms of free cumulants. For this purpose, we are
going to associate a polynomial to a rooted tree.

Definition 5.3. An N -labelling of a graph is a map f from its vertices to [N ]. A labelling f
of a rooted tree is called nondecreasing if for every vertex v and every child vertex u of v we
have f(v) ≤ f(u). An N -labelling of a forest is called nondecreasing if the labels on each of its
trees are nondecreasing.

Proposition 5.4. Let t be a rooted tree and let Pt(N) be the number of nondecreasing N-
labellings of t. Then Pt(N) is a polynomial in N of degree ≤ |t| with zero constant term. An
analogous statement holds for forests.
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Proof. It is easy to see that the polynomial Pt(N) of a nesting forest consisting of rooted trees
t1, . . . tk is just

∏
i Pti(N), therefore it suffices to show that Pt(N) is a polynomial without

constant term for every rooted tree t. We proceed by induction. If t has only one vertex, then
Pt(N) = N satisfies the claimed property. Otherwise t decomposes into the root vertex and
branches t′1, . . . , t

′
m. If the root gets label k, all other vertices must get labels not smaller than

k and the number of such nondecreasing labellings is

Q(N, k) =
m∏

i=1

Pt′i
(N − k + 1)

which by assumption is a polynomial in N and k of degree ≤ |t| − 1 without constant term.
The number of N -labellings can be enumerated recursively by conditioning on the label of the
root and we obtain

Pt(N) =
N∑

k=1

Q(N, k).

We can now apply Faulhaber’s summation formula

(5.1)
N∑

k=1

kn =
Bn+1(N + 1)−Bn+1(0)

n + 1

to each term to express Pt(N) in terms of Bernoulli polynomials Bn(x) defined by their gener-
ating function

zexz

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!
.

It follows that Pt(N) is a polynomial of degree ≤ |t| without constant term. �

Definition 5.5. Let αt be the coefficient of the linear term of Pt, i.e.,

αt = P ′
t (0).

For π ∈ NC(n), we define Pπ(N) := Pτ(π)(N) and απ := ατ(π).

Example 5.6. (1) If t is not connected then αt = 0.
(2) Let t be a tree consisting of the vertices {1, 2, . . . , n+ 1} and n edges, each connecting

1 and k for 2 ≤ k ≤ n + 1. The vertex 1 is the root of t. Then Pt(N) is equal
to Faulhaber’s formula (5.1) and αt = P ′

t (0) = 1
n+1

B′
n+1(1) = Bn(1) because of the

identity B′
k(x) = kBk−1(x). So αt = Bn(1) is the nth Bernoulli number.

(3) A tree t has n vertices {1, 2, . . . , n} and n − 1 edges, each connecting k and k + 1 for
1 ≤ k ≤ n− 1, and 1 is the root of t. Then Pt(x) =

(
x+n−1

n

)
and αt =

1
n
.

Proof of Theorem 1.2. Let J be a subset of [N ] × [N ] including the diagonal set {(j, j) | j ∈
[N ]}. Lenczewski introduced the concept of strong matricial freeness for an array (Xij)(i,j)∈J of
elements in a noncommutative probability space (A, (ϕij)(i,j)∈J), where (ϕij)(i,j)∈J is an array of
unital linear functionals. Following [Len12], we assume that ϕii = ϕ, the same linear functional,
and ϕij do not depend on i if i 6= j. Let (Xij)(i,j)∈J be an array of elements with low-identical
distributions, that is, the moments ϕ(Xn

ij) do not depend on j.
Given (π, f) ∈ NC(n,N), we associate a product of free cumulants r(π,f) := r(V1,f) · · · r(V|π|,f)

as follows. Take a block Vk of π with color i. If its outer blocks are all colored by i, we define
r(Vk ,f) := r|Vk |(Xii). If Vk has an outer block with another color j, then r(Vk ,f) := r|Vk|(Xij)
where j is the color of the outer block nearest to Vk whose color j is different from i. If a pair
(i, j) is not an element of J , then we understand rk(Xij) = 0, k = 1, 2, 3, . . ..

We need the following results (see Lemma 7.1 and Theorem 3.1 of [Len12] and also Proposition
4.1 of [Len10]):
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(i)

(5.2) ϕ








∑

(i,j)∈J

Xij




n

 =
∑

(π,f)∈NC(n,N)

r(π,f).

(ii) Let (Xij)(i,j)∈J be strongly matricially free. If J = {(i, j) | 1 ≤ i ≤ j ≤ N} and the

distributions of Xij do not depend on j, then Xi :=
∑i

j=1Xij , i ∈ [N ], are monotonically
independent.

In statement (ii), note that Xi has the same distribution as Xii with respect to ϕ as mentioned
in the proof of Proposition 4.1 of [Len10]. In statement (ii) we assume in addition that the
distributions of Xij do not depend on (i, j). Then formula (5.2) in statement (i) becomes

ϕ((X1 + · · ·+XN)
n) =

∑

(π,f)∈NC(n,N)

r(π,f)

for monotonically i.i.d. random variables Xi. Each summand r(π,f) is either
∏

V ∈π r|V |(X1)
or 0. The summand r(π,f) does not vanish if and only if, for each block V with color i, its
outer blocks have colors not greater than i. The number of such colorings is just equal to
Pπ(N). By definition, the nth monotone cumulant of X1 coincides with the coefficient of N in
ϕ((X1 + · · ·+XN)

n) (which, in particular, is zero unless π ∈ NCirr(n)), so (1.8) follows.
The identity (1.9) is proved similarly to Theorem 1.1(1.7). From (1.8) and Lemma 4.3, it

follows that

−hn(X) = hn(X̃) =
∑

π∈NC(n)

απrπ(X̃) =
∑

π∈NC(n)

(−1)|π|απbπ(X).

Identity (1.10) follows from (1.8) together with the easy fact (following from (1.2)) that more
generally

rσ =
∑

π∈P(n)
π̄=σ

κπ, σ ∈ NC(n).

Indeed, we observe that π ∈ Pirr(n) if and only if π̄ ∈ NCirr(n). Hence
∑

π∈Pirr(n)

απ̄κπ =
∑

σ∈NCirr(n)

ασ

∑

π∈P(n)
π̄=σ

κπ =
∑

σ∈NCirr(n)

ασrσ = hn.

�

Remark 5.7. The moment-cumulant formula (5.2) is known only for the univariate case, and
so we can prove Theorem 1.2 only for univariate cumulants.

6. Tutte polynomials and proof of Theorem 1.4

For an arbitrary finite set S we denote by P(S) its set of partitions. Any bijection between S
and {1, . . . |S|} induces a poset isomorphism P(S) to P(|S|). If S is totally ordered we consider
the bijection which preserves this order and define NC(S), I(S) via this isomorphism.

Definition 6.1. Let π ∈ P(n).

(1) We define the crossing graph G(π) := (V,E) of π, where the set of vertices V =
{V1, . . . , V|π|} is indexed by the blocks2 of π and an edge joins the vertices Vi, Vj if and
only if they cross, i.e., W = (Vi, Vj) ∈ (P(Vi ∪ Vj) \ NC(Vi ∪ Vj)).

(2) Similarly, the vertices of the anti-interval graph G̃(π) := (V,E) of π are just the blocks of
π. An edge joining (Vi, Vj) is drawn if and only if W = (Vi, Vj) ∈ (P(Vi∪Vj)\I(Vi∪Vj)).
(For a noncrossing partition this is the nesting forest from Definition 3.1, augmented by
the edges from all vertices to all their descendents).

2It should not cause confusion that we regard Vi simultaneously as a vertex of G(π) and as a block of π
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G(π) G̃(π)
−→
G(π)

π = {{1, 10}, {2, 6}, {3, 5}, {4, 7}, {8, 16}, {9, 12}, {11, 14}, {13, 15}}=

Figure 3. A partition and its associated graphs (see Definition 8.2 for the third graph).

(3) For a finite graph G = (V,E) and e ∈ E, we let G\e = (V,E\e), and G/e = (V/e, E\e)
be the graph obtained from removing e and identifying the endpoints of e. The Tutte
polynomial TG(x, y) of G can be defined recursively by setting TG(x, y) = 1 if E = ∅
and:

TG(x, y) =






xTG/e(x, y) if e is a bridge,

yTG\e(x, y) if e is a loop,

TG/e(x, y) + TG\e(x, y) otherwise.

Remark 6.2. Let (Ai)i∈I be a family of sets. Recall that the intersection graph is the graph
with vertex set {Ai : i ∈ I} where there is an edge i ∼ j if and only if Ai ∩ Aj 6= 0, see [Pri98]
for more information. An interval graph is the intersection graph of a family of intervals on
the real line. Coincidentally, the anti-interval graph defined above is exactly the interval graph
generated by the convex hulls of the blocks of π.

Remark 6.3. Let G = (V,E) be any finite graph. For π ∈ P(V ) we define i(E, π) to be the
number of edges in E which connect vertices with both endpoints belonging to the same block
of π. It was shown in [JV13] that for any graph G and q 6= 1 we have:

(6.1)
1

(q − 1)#V−1

∑

π∈P(V )

qi(E,π)µP(π, 1V ) =

{
TG(1, q) if G is connected,

0 otherwise

with the convention that q0 = 1 for q = 0.

We obtain the Boolean-to-classical cumulant formula by following the lines of the proof of
(1.5) in [JV13].

Proof of Theorem 1.4. Let X1, . . . , Xn ∈ A. Using subsequently the classical and the Boolean
moment-cumulant formulas (2.10), (2.5), we obtain

Kn(X1, . . . , Xn) =
∑

π∈P(n)

ϕπ(X1, . . . , Xn)µP(π, 1̂n)

=
∑

σ,π∈P(n)
σ�π

Bσ(X1, . . . , Xn)µP(π, 1̂n)

=
∑

σ∈P(n)

Bσ(X1, . . . , Xn)
∑

π�σ

µP(π, 1̂n),

where, for π ≥ σ, we write π � σ if the restriction σ|W ∈ P(W ) to any block W of π is an
interval partition.

Let us fix σ ∈ P(n) and consider its anti-interval graph G̃(σ) = (V,E). There is a one-
to-one correspondence π 7→ π̃ between partitions {π : π ≥ σ} ⊂ P(n) and P(V ): π ≥ σ is
obtained by gluing blocks of σ, and π̃ describes which blocks of σ are glued together. In view
of the formula (6.1) for q = 0, we observe that i(E, π̃) = 0 exactly for those π ≥ σ such that
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π � σ. Furthermore, |π| = |π̃| and hence µP(π̃, 1V ) = (−1)|π̃|−1(|π̃|−1)! = (−1)|π|−1(|π|−1)! =
µP(π, 1̂n). Therefore

∑

π�σ

µP(π, 1̂n) =
∑

π≥σ

0i(E,π̃)µP(π, 1̂n) =
∑

π̃∈P(V )

0i(E,π̃)µP(π̃, 1V )

and thus, formula (6.1) yields

∑

π�σ

µP(π, 1̂n) =
∑

π̃∈P(V )

0i(E,π̃)µP(π̃, 1V ) =

{
(−1)|σ|−1TG̃(σ)(1, 0) if G̃(σ) is connected,

0 otherwise.

It is not hard to see that the number of blocks of the interval closure of σ is equal to the number
of connected components of its anti-interval graph. Therefore G̃(σ) is connected iff σ ∈ Pirr(n)
and the formula follows. �

Several evaluations of the Tutte polynomial have combinatorial interpretations. For our
purposes it will be interesting to note the fact that TG(1, 0) equals the number of rooted acyclic
orientations with unique specified source; this number does not depend on the choice of the
source [GZ83]. Recall that an acyclic orientation of a graph is an orientation without oriented
cycles. An acyclic orientation has source v if there is a directed path from v to every other
vertex. Alternatively, this can be interpreted as the Hasse diagram of an ordering of the vertices
of G with prescribed unique minimal element.

Returning from graphs to partitions this has the following pictorial interpretation.

Definition 6.4. (1) Let π be a connected set partition. A crossing heap on π is a poset
structure on the blocks of π such that any pair of crossing blocks is comparable. A
pyramid is a crossing heap such that the first block is the only maximal element.

(2) Let π be an irreducible set partitions. An interval heap on π is a poset structure on the
blocks of π such that any pair of blocks whose convex hulls have nonempty intersection
are comparable. A pyramid is an interval heap such that the first block is the only
maximal element.

The following proposition is immediate from the definition, see Fig. 4 and Fig. 5.

Proposition 6.5. (1) The crossing heaps of a connected partition are in bijection with the
acyclic orientations of its crossing graph. Pyramids correspond to those rooted acyclic
orientations which are rooted in the first block, thus TG(π)(1, 0) equals the number of
crossing heaps on π which are pyramids.

(2) The interval heaps of an irreducible partition are in bijection with the acyclic orientations
of its anti-interval graph. Pyramids correspond to those rooted acyclic orientations which
are rooted in the first block, thus TG̃(π)(1, 0) equals the number of interval heaps on π
which are pyramids.

From these facts one can make a connection to the Cartier-Foata-Viennot theory of heaps
[CF69] and in fact some proofs of [JV13] make use of this machinery. The heap interpretation
of formulas (1.5) and (1.11) read as follows.

Corollary 6.6. The classical cumulants can be expressed in terms of the free and Boolean
cumulants as follows.

(6.2) Kn =
∑

(−1)|π|−1Rπ

where the sum runs over all pyramidal crossing heaps.

(6.3) Kn =
∑

(−1)|π|−1Bπ

where the sum runs over all pyramidal interval heaps.
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1
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4

1
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4

Figure 4. The crossing graph, some acyclic orientations and crossing heaps of

the partition π = ; blocks are numbered in the canonical order. Note
that the upper right orientation is not a pyramid.

7. Permutation statistics and proof of Theorem 1.5

There are no cancellations in formula (1.11) and one might wonder whether there is another
combinatorial interpretation. The following formulas suggest that a statistic on permutations
might be involved.

Corollary 7.1. ∑

π∈Pirr(n)

TG̃(π)(1, 0) = (n− 1)!.

Proof. The sum is obtained by evaluating the negative classical cumulants of a (formal) distri-
bution with Boolean cumulants bn = −1 for all n. The “moments” have generating function

M(z) =
1

1 +
∑∞

n=1 z
n
= 1− z

and in this case F (z) = M(z). Thus the negative classical cumulants have exponential gener-
ating series

− log(1− z) =

∞∑

n=1

zn

n
.

�

We collect key concepts for statistics of permutations.

(1) Recall that a run in a permutation σ ∈ Sn is a maximal increasing segment of the
sequence (σ(1), σ(2), . . . , σ(n)). Any permutation decomposes uniquely into runs. With
the exception of the last run, at the end of each run there is a descent, therefore
the number of runs is equal to the number of descents incremented by one. Given
a permutation σ we denote by runs(σ) the set partition associated to the set of runs.
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Figure 5. The anti-interval graph, some acyclic orientations and interval heaps

of the partition π = . All heaps except the last are pyramidal.

(2) Every permutation π has a unique factorization into cycles σ = γ1γ2 · · · γk, where the
cycles are sorted in increasing order with respect to their minimal elements. Moreover,
every cycle is written starting with its minimal element. A cycle run in a permutation
σ is a maximal contiguous increasing subsequence of one of its cycles; in other words, a
maximal sequence i1 < i2 < · · · < ir such that σ(ik) = ik+1.

It is easy to see that distinct cycle runs of a given permutation are disjoint and
therefore give rise a set partition of order n. We denote this set partition by cruns(σ).

We denote by c(σ) ∈ P(n) the cycle partition of σ, i.e., the set partition whose blocks
are given by the cycles of σ.

The key identity for showing Theorem 1.5 is contained in the following lemma.

Lemma 7.2.

(7.1) ϕ(X1X2 · · ·Xn) =
∑

σ∈Sn

(−1)#cruns(σ)−#c(σ)Bcruns(σ)(X1, X2, . . . , Xn).

Proof. The starting point is formula (2.5) for π = 1̂n, expressing moments in terms of Boolean
cumulants. The right hand side of formula (2.5) for π = 1̂n arise from the terms

(−1)#cruns(σ)−#c(σ)Bcruns(σ)(X1, X2, . . . , Xn)

where σ factorizes into “interval cycles”, i.e., cycles of the form

(k, k + 1, k + 2, . . . , l).
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(1, 3)(2, 5, 7, 4, 6)(8, 9) (1, 3)(2, 5, 7)(4, 6)(8, 9)

Figure 6. The involution Φ

Note that in this case we have # c(σ) = #cruns(σ) and so the sign is +1. Hence the proof
follows the common strategy of finding an inversion which shows cancellation of all permutations
which do not have a factorization into interval cycles.

Assume that a permutation σ is not of interval type, and let σ = γ1γ2 · · ·γm be its cycle
decomposition in standard order and γi = (ri1, ri2, . . . , riki) be the run decompositions of the
cycles. Since σ is not of interval type, there are descents. Our involution Φ operates on the
last descent. We say that σ is of type A if the last descent occurs within one cycle and type B
if it occurs between two consecutive cycles. We set up an involution Φ as follows.

If σ is of type A and the last descent occurs within one cycle, then it occurs necessarily
between the last two runs of this cycle. We split the cycle at this descent to obtain Φ(σ) which
is of type B.

If σ is of type B, the descent occurs between two cycles and the second cycle necessarily only
consists of one run. We join the two cycles to obtain Φ(σ) which is of type A.

Figure 6 shows an example of the action of the involution Φ. The permutation on the left
(type A) is mapped to the permutation on the right (type B) and vice versa.

In both cases the position of the last descent remains the same and therefore Φ maps type
A to type B bijectively and Φ ◦ Φ = Id.

On the other hand, the total number of runs is unchanged, while the total number of cycles
is changed by ±1. It follows that the contributions of type A and type B permutations in the
sum (7.1) cancel. �

First proof of Theorem 1.5. Denote by K̃n the right hand side of (1.12):

K̃n =
∑

σ∈Cn

(−1)#cruns(σ)−1Bcruns(σ).

The full cycles are exactly the permutations σ such that c(σ) = 1̂n and thus

K̃n =
∑

σ∈Sn

c(σ)=1̂n

(−1)#cruns(σ)−1Bcruns(σ).

Taking the product of them, it is then easy to see that K̃π =
∑

σ∈Sn

c(σ)=π
(−1)#cruns(σ)−#c(σ)Bcruns(σ),

and so from Lemma 7.2

ϕ(X1 · · ·Xn) =
∑

π∈P(n)

K̃π(X1, . . . , Xn).

Since the same formula holds with K̃π replaced by Kπ, then multiplicativity and the Möbius
principle imply that K̃n = Kn. �

Another proof of Theorem 1.5 can be obtained from the following identities.

Lemma 7.3. For any irreducible partition π ∈ P(n) the evaluation of the Tutte polynomial
TG̃(π)(1, 0) is equal to the following numbers.
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(1) The number of pyramidal interval heaps on π.
(2) The number of cyclic permutations σ ∈ Cn such that and cruns(σ) = π.
(3) The number of permutations σ ∈ Sn such that σ(1) = 1 and runs(σ) = π.

In particular, cruns(σ) is an irreducible permutation for every σ ∈ Cn.
Proof. The first identity has already been seen in Proposition 6.5 and the equality of the other
two numbers follows from the obvious bijection between cyclic permutations and permutations
fixing 1. It remains to provide a bijection between runs of cyclic permutations and pyramidal
interval heaps.

Given a cyclic permutation σ, we assign to it an ordered interval partition Ψ(σ) consisting
of the cycle runs of σ read from left to right. This order induces a heap structure by placing
subsequent blocks below their predecessors. We claim that Ψ(σ) is a pyramid.

Let r1, r2, . . . , rm be the cycle runs of σ, in the order of their appearance when σ is written
as (1, σ(1), σ2(1), . . . , σn−1(1)). Clearly r1 is not a singleton and for every run rk with k ≥ 2
the following statements are true.

(a) The maximal element in the run rl−1 exceeds the starting element of rl (2 ≤ l ≤ k).
(b) There is a run ri with i ≤ k − 1 such that as an element of the heap, ri covers rk, i.e.,

max ri > min rk and min ri < max rk. In other words, the convex hulls of ri and rk intersect.

Since r1, . . . , rl−1, rl, . . . is the decomposition of σ into cycle runs, we must have max rl−1 >
min rl and this implies (a).

To show (b), we perform the following steps.

(1) If min rk−1 < max rk, then rk−1 itself covers rk from (a) and we are done.
(2) If min rk−1 > max rk, then max rk−2 > min rk−1 > max rk. If min rk−2 < max rk, then

rk−2 covers rk and we are done. If not, we go to rk−3. We repeat this until we reach
some run ri (i < k− 1) such that min ri < max rk < max ri. This must happen at some
point because ultimately we reach r1 = (1, . . . ) and then clearly 1 = min r1 < max rk.

The inverse map can be defined recursively as follows: Given an interval heap, take the
leftmost minimal element and write it to the left of the previously written cycle run. There
are two possibilities. Either the previous run was not covered by the current one, then it came
from a block to the left, or it was covered by the current one. In either case the maximum of
the current block is larger than the minimum of the previous one and thus the current block
starts a new cycle run. For an example of this process see Figure 7. This map clearly reverses
the map Ψ defined above. �

With this lemma, Theorem 1.5 follows from Corollary 6.6, equation (6.3) or from Theorem
1.4.

Recall that the Eulerian polynomials are defined by

(7.2) En(x) =
∑

σ∈Sn

xd(σ) =
n∑

k=0

〈
n

k

〉
xk

where
〈
n
k

〉
is the number of permutations with k descents. A good reference for these and the

following facts is the book [GKP94]. The Eulerian polynomials have been studied as moments
in [Bar11].

Note that each run of a permutation must follow a descent and therefore ♯(runs(σ)) = d(σ)+1,
and Lemma 7.3 together with formula (7.2) yields the identity

(7.3)
∑

π∈Pirr(n)
|π|=k

TG̃(π)(1, 0) =

〈
n− 1

k − 1

〉
.

As a special case of Corollary 1.6, we consider the Boolean Poisson distribution. We interpret
the Eulerian polynomials as classical cumulants.
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1 2 3 4 5 6 7 8 9 10 11 12 13

→ ( 2,5)

1 2 3 4 5 6 7 8 9 10 11 12 13

→ ( 3,8,2,5)

1 2 3 4 5 6 7 8 9 10 11 12 13

→ ( 9,11,3,8,2,5)

1 2 3 4 5 6 7 8 9 10 11 12 13

→ ( 7,13,9,11,3,8,2,5)

1 2 3 4 5 6 7 8 9 10 11 12 13

→ ( 4,10,7,13,9,11,3,8,2,5)

1 2 3 4 5 6 7 8 9 10 11 12 13

→ (1,6,12,4,10,7,13,9,11,3,8,2,5)

Figure 7. The inverse map for an interval heap on the partition π =
{{1, 6, 12}, {2, 5}, {3, 8}, {4, 10}, {7, 13}, {9, 11}}

Proposition 7.4. Consider the distribution with Boolean cumulants bn = x for all n. Then
the classical cumulants are given by the Eulerian polynomials

κn = xEn−1(−x).

Proof. By the remarks above bruns(σ) = xd(σ)+1, and hence from Theorem 1.6

κn =
∑

σ∈Sn

σ(1)=1

(−1)d(σ)xd(σ)+1.

The desired formula follows from the natural bijection {σ ∈ Sn : σ(1) = 1} → Sn−1, which
preserves the number of descents. �

Remark 7.5. (1) The following determinant formulas relating moments and classical cu-
mulants are known:

κn = (−1)n−1(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

m1 1 0 0 0 · · · 0
m2 m1 1 0 0 · · · 0
m3

2!
m2

2!
m1 1 0 · · · 0

m4

3!
m3

3!
m2

2!
m1 1 · · · 0

...
...

...
...

...
mn

(n−1)!
mn−1

(n−1)!
mn−2

(n−2)!
· · · m1

∣∣∣∣∣∣∣∣∣∣∣∣
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and

mn =

∣∣∣∣∣∣∣∣∣∣∣∣

κ1 −1 0 0 0 · · · 0
κ2 κ1 −2 0 0 · · · 0
κ3

2!
κ2 κ1 −3 0 · · · 0

κ4

3!
κ3

2!
κ2 κ1 −4 · · · 0

...
...

...
...

...
κn

(n−1)!
κn−1

(n−2)!
κn−2

(n−3)!
· · · κ1

∣∣∣∣∣∣∣∣∣∣∣∣

.

These formulas follow from Cramer’s rule applied to the linear system obtained from
the recursion formula

n∑

k=1

(
n− 1

k − 1

)
mn−kκk = mn, n ≥ 1;

see [RS00].
(2) Similarly, comparison of coefficients in the identity M(z)(1 − B(z)) = 1 leads to the

recursion
n∑

k=1

mn−kbk = mn, n ≥ 1

and thus [DM00]

bn = (−1)n−1

∣∣∣∣∣∣∣∣∣∣

m1 1 0 · · · 0
m2 m1 1 · · · 0
...

...
. . .

. . .
mn−1 mn−2 · · · m1 1
mn mn−1 · · · m2 m1

∣∣∣∣∣∣∣∣∣∣

, mn =

∣∣∣∣∣∣∣∣∣∣

b1 −1 0 · · · 0
b2 b1 −1 · · · 0
...

...
. . .

. . .
bn−1 bn−2 · · · b1 −1
bn bn−1 · · · b2 b1

∣∣∣∣∣∣∣∣∣∣

.

8. Monotone-to-classical case:

Although we have not yet found a satisfactory description for the general coefficients appear-
ing in the monotone-to-classical cumulant formula

(8.1) Kn =
∑

π∈P(n)

β(π)Hπ,

we report on some partial results including Theorem 1.7.
We first provide some general considerations on the recursive nature of this problem and

then apply the approach of [JV13] to obtain some special cases.
We first observe that the equation

(8.2)
∑

π∈P(n)

Kπ(X1, . . . , Xn) = ϕ(X1 · · ·Xn) =
∑

π∈NC(n)

1

τ(π)!
Hπ(X1, . . . , Xn)

can be transofmed into the form

(8.3) Kn(X1, . . . , Xn) = −
∑

σ∈P(n),σ 6=1̂n

Kσ(X1, . . . , Xn) +
∑

π∈NC(n)

1

τ(π)!
Hπ(X1, . . . , Xn).

which allows for a recursive algorithm to obtain the coefficients β(π). More precisely, once
β is known for all partitions of size k < n, the coefficient β(π) of a partition π ∈ P(n) is
obtained as follows: We take any partition σ ∈ [π, 1̂n) and express Kσ in terms of the monotone
cumulants. If σ = {W1,W2, . . . ,Ws}, the coefficient of Hπ in such an expression will be exactly
β(π|W1

) · · ·β(π|Ws
). We must do this for every σ ≥ π and if π ∈ NC(n) we must in addition
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consider the coefficient (τ(π)!)−1 on the right hand side of eq. (8.3) as well. Hence relation (8.3)
above can be recast into the following recursion

(8.4) β(π) =





1

τ(π)!
−

∑

σ∈P(n)

σ∈[π,1̂n)

∏

W∈σ

β(π|W ) if π ∈ NC(n),

−
∑

σ∈P(n)

σ∈[π,1̂n)

∏

W∈σ

β(π|W ) if π /∈ NC(n).

We show first that β(π) = 0 for all π /∈ Pirr by induction on |π|. For |π| = 1 the assertion is
trivial. Suppose that β(π) = 0 for all π /∈ Pirr with |π| < k.

Now let |π| = k with π /∈ Pirr. Let π1, . . . , πs, s ≥ 2, be the irreducible components of π. By
formula (8.4), we need to look at partitions σ ∈ [π, 1n). If a block V of σ contains blocks of π
from different irreducible components, then π|V is reducible and hence β(π|V ) = 0 by induction
hypothesis.

Therefore, a contribution to β(π) can only come from partitions of the form σ = σ1 ∪ σ2 ∪
· · · ∪ σs, with σi ≥ πi, and hence

∑

σ∈P(n)

σ∈[π,1̂n)

∏

W∈σ

β(π|W ) =
∑

σ1∪···∪σs∈P(n)
σi≥πi

∏

W∈σ

β(π|W )(8.5)

=
s∏

i=1

∑

σi≥πi

∏

W∈σi

β(πi|W ).(8.6)

We now apply recursion (8.4) separately to each sum occuring in (8.5) and obtain

∑

σi≥πi

∏

W∈σi

β(πi|W ) = β(πi) +
∑

σi∈[πi,1̂)

∏

W∈σi

β(πi|W ) =






1

τ(πi)!
if πi ∈ NC,

0 if πi /∈ NC.

Now we observe that π ∈ NC if and only if each πi ∈ NC and that τ(π)! = τ(π1)! · · · τ(πs)! for
π ∈ NC, to conclude that β(π) = 0.

Remark 8.1. Note that, in order to show that β is supported on Pirr, we only used that, for
any pair of cumulants (An)n≥1, (Cn)n≥1, we have:

∑

π∈P(n)

ω1(π)Aπ(X) = ϕ(X) =
∑

π∈P(n)

ω2(π)Cπ(X),

where, for i = 1, 2, the weights ωi(π) = ωi(π1) · · ·ω(πs) factorize according to the irreducible
components π1, . . . , πs of π. Following the proof that β(π) = 0 for π /∈ Pirr, we get for some
constants (α(π))π∈Pirr

⊂ R that

An(X) =
∑

π∈Pirr(n)

α(π)Cπ(X).

This shows that all 12 cumulant formulas are supported on Pirr. Moreover, the fact that
monotone, Boolean and free cumulants assign a weight ω(π) = 0 to any crossing partition
implies that the corresponding cumulant formulas will be actually supported on Pirr ∩ NC =
NCirr.

The classical and free cumulants both have weights that are invariant under cyclic rotations.
This means that the corresponding α(π) will also be rotationally invariant. Hence α(π) can
only be nonzero if all cyclic rotations of π remain in Pirr(n). This means that π ∈ Pconn.
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Because of the nature of the recursion (8.4), the dependence of the coefficient β(π) is uniquely
determined by crossing/nesting structure of the blocks of partitions contained in the interval
[π, 1̂n]. Hence we suggest the following refinement of the anti-interval graph which actually
distinguishes between crossings and nestings (see fig. 3):

Definition 8.2. The anti-interval digraph
−→
G(π) is obtained from the interval graph by replac-

ing every (non-directed) edge (Vi, Vj) of G̃(π) by:

(1) a directed edge (Vi, Vj), if Vj nests inside Vi,
(2) a directed edge (Vj , Vi), if Vi nests inside Vj,
(3) a non-directed edge (Vi, Vj), otherwise (equivalently, if Vi and Vj cross).

It is not hard to see (by induction on |π|) that the digraph
−→
G(π) = (V,E) determines β(π):

In the recursion (8.4), the contribution of each 1n > σ = {W1, . . . ,Ws} ≥ π, one should look at

the subgraphs
−→
G(π)|Wi

of
−→
G(π) indicated by the blocks of σ and then just multiply all β(π|Wi

),

which are known already since 1n > σ. So we may write β(π) = β(
−→
G(π)).

Let us conclude with the proof of Theorem 1.7. First we will use the approach of [JV13] to
obtain a rather explicit expression for β(π) from which everything can be deduced.

Lemma 8.3.

(8.7) β(π) =
∑

σDπ

µP(σ, 1̂n)

τ(π|σ)!

where τ(π|σ)! = ∏
W∈σ τ(π|W )! and the partial order relation π E σ on P refines the usual

order π ≤ σ by the additional requirement that π|W is noncrossing for every block W ∈ σ.

Proof. We follow the proof of [JV13] and write

Kn =
∑

σ∈P(n)

ϕσ µP(σ, 1̂n)

=
∑

σ∈P(n)

∑

πEσ

1

τ(π|σ)!Hπ µP(σ, 1̂n)

=
∑

π∈P(n)

Hπ

∑

σDπ

µP(σ, 1̂n)

τ(π|σ)! .

�

Proof of Theorem 1.7. The first part follows from Weisner’s lemma [BBR86, Prop. 6.3]. Let P
be a lattice and a, b, c ∈ P , then

∑

x∧a=c

µ(x, b) =

{
0 if a 6≥ b,

µ(c, b) if a ≥ b.

Consider the function

fπ(σ) =

{
1

τ(π|σ)!
if π E σ,

0 if π 6E σ.

Assume π ∈ P(n) is not irreducible, and let ρ = π̂ 6= 1̂n be its interval closure. Then it is
easy to see that fπ(σ) = fπ(σ ∧ ρ). Indeed, if the restriction π|b has a crossing for some b ∈ σ,
then it occurs in the restriction πj|b of some irreducible factor πj of π. If π|σ has no crossings,
then all nesting trees are contained inside the irreducible factors and therefore occur inside the
blocks of σ ∧ ρ.
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Using this fact we can write

β(π) =
∑

σDπ

µP(σ, 1̂n)

τ(π|σ)!

=
∑

σ≥π

fπ(σ)µP(σ, 1̂n)

=
∑

σ≥π

fπ(σ ∧ ρ)µP(σ, 1̂n)

=
∑

τ≥π

fπ(τ)
∑

σ∧ρ=τ

µP(σ, 1̂n)

= 0.

This proves the first statement.
The second part holds true because the involved trees τ(π|σ) are trivial and hence formula

(8.7) becomes

β(π) =
∑

σDπ

µP(σ, 1̂n) = (−1)|π|−1TG(π)(1, 0)

as in the proof of [JV13, Theorem 7.1]. Note that the assumptions imply that π is connected.
Finally, let π ∈ NCirr be an irreducible noncrossing partition of depth 2. This means that

there is one outer block and m := |π| − 1 inner blocks and the nesting tree τ(π) consists of the
root and m leaves.

We classify the partitions of t = τ(π) according to the number of elements in the block
containing the root. There are

(
n
k

)
different subsets b of t containing k vertices in addition to

the root and for every set like this (t|b)! = k + 1. Then the remaining vertices of t can be
partitioned without affecting the factorial and as k ranges between 0 and n we obtain

β(t) =

m∑

k=0

(
m

k

) ∑

ρ∈P(m−k)

− |ρ|
k + 1

µP(ρ, 1̂m−k) = −
m∑

k=0

(
m

k

)
αm−k

k + 1

where

αn =
∑

ρ∈P(n)

|ρ|µP(ρ, 1̂n) =
d

dx

∑

ρ∈P(n)

x|ρ|µP(ρ, 1̂n)

∣∣∣∣∣∣
x=1

.

The derivand in the last expression can be interpreted as the classical cumulant of order n of
a standard Bernoulli law of weight x and the exponential generating function therefore is

∞∑

n=1

αn

n!
zn =

d

dx
log

(
1 +

∞∑

n=1

x

n!
zn

)∣∣∣∣∣
x=1

=
d

dx
log(1 + x(ez − 1))

∣∣∣∣
x=1

=
ez − 1

1 + x(ez − 1)

∣∣∣∣
x=1

= 1− e−z =
∞∑

n=1

(−1)n−1

n!
zn

and hence αn = (−1)n−1. Thus, denoting by βm := β(t),

βm = −
m∑

k=0

(
m

k

)
(−1)m−k−1

k + 1
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and so

∞∑

m=0

βm

m!
zm =

∞∑

m=0

m∑

k=0

1

(k + 1)!

(−1)m−k

(m− k)!
zm

=
1

z
(ez − 1)e−z

=

∞∑

m=0

(−1)m

(m+ 1)!
zm

and consequently β(t) = βm = (−1)m

m+1
= (−1)|π|−1

|π|
. �

Remark 8.4. For the family πn = {{1, 2n}, {2, 2n− 1}, . . . , {n, n + 1}}, n ≥ 1, the sequence
(n!β(πn))n = (1,−1, 4,−33, 456,−9460, 274800, . . . ) are the coefficients of the log-Bessel func-
tion ([Slo14, A101981] ).

Indeed, for π = πn the nesting tree is just a line segment and

β(π) =
∑

σ≥π

µP(σ, 1̂n)

[π, σ]!
.

Here we use the fact that the interval [π, σ] is isomorphic to a direct product
∏P(k)mk and

τ(π|σ)! = [π, σ]! =
∏
(k!)mk . In other words β = f ∗ µP , the convolution of the multiplicative

functions on P associated to the sequences fn = 1
n!

and µn = (−1)n−1(n− 1)!.
Recall [DRS72, Sta99] that the reduced incidence algebra of P incarnates the Faa di Bruno

formula for exponential power series, i.e., if A(z) =
∑∞

n=1
an
n!
zn and B(z) =

∑∞
n=1

bn
n!
zn are the

corresponding exponential generating functions and c = a ∗ b, then the generating function of
the sequence (cn) is

∞∑

n=1

cn
n!

zn = B(A(z)).

In our case β = f ∗ µP , where

F (z) =
∞∑

n=1

zn

(n!)2
= J0(2i

√
z)− 1

is the Bessel function of first kind and

M(z) =

∞∑

n=1

(−1)n−1 z
n

n
= log(1 + z)

is the logarithm, thus β(πn) are the coefficients of the log-Bessel function

log J0(2i
√
z).

The sequence bn = n!β(πn) satisfies a recursion found by Carlitz [Car63], namely

bn+1 =
n∑

k=1

(
n

k

)(
n

k − 1

)
bkbn+1−k

and therefore βn = β(πn) satisfies

βn+1 =
bn+1

(n+ 1)!
=

n∑

k=1

1

n+ 1

n!

(n− k)!(k − 1)!

bk
k!

bn+1−k

(n + 1− k)!
=

n∑

k=1

n

n+ 1

(
n− 1

k − 1

)
βkβn+1−k.
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compatibles et dépendants et leur application au calcul des cumulants de la répétition, C. R. Acad.
Sci. Paris 225 (1947), 277–278.

[Slo14] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at
http://oeis.org, 2014.

[Spe94] Roland Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolu-

tion, Math. Ann. 298 (1994), no. 4, 611–628.
[Spe97] , On universal products, Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun.,

vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 257–266.
[Sta99] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathemat-

ics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota
and appendix 1 by Sergey Fomin.

[Sta12] , Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Math-
ematics, vol. 49, Cambridge University Press, Cambridge, 2012.

[SW97] Roland Speicher and Reza Woroudi, Boolean convolution, Free probability theory (Waterloo, ON,
1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 267–279.

[Voi85] Dan Voiculescu, Symmetries of some reduced free product C∗-algebras, Operator algebras and their
connections with topology and ergodic theory (Buşteni, 1983), Lecture Notes in Math., vol. 1132,
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