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1. Introduction

Our aim in this paper is to construct a polynomial invariant of cyclic graphs, that
is, graphs with cyclic orders at the vertices, or, equivalently, of 2-cell embeddings
of graphs into closed orientable surfaces. We shall call this invariant the cyclic
graph polynomial, and denote it by the letter C . The cyclic graph polynomial is a
three-variable polynomial which generalizes the Tutte polynomial in an essential
way. In the next section we de®ne cyclic graphs from two different viewpoints,
and give some background on cyclic graphs and the Tutte polynomial. In § 3 we
discuss one-vertex cyclic graphs, thought of as chord diagrams, introducing an
algebraic notion of the rank of a chord diagram needed to de®ne the cyclic graph
polynomial. In § 4 we de®ne the cyclic graph polynomial in terms of recurrence
relations and a `boundary condition' on one-vertex cyclic graphs, and state our
main result ± that these relations have a (unique) solution. This is proved in § 5.
In § 6 we state and prove a universal property of the cyclic graph polynomial. In
§ 7 we give an alternative description of the rank of a chord diagram, as the genus
of the surface naturally associated to the diagram. Finally, in § 8 we give some
further properties of the cyclic graph polynomial, showing that it has a spanning
tree expansion, and, more importantly, that it depends on the orders (or
embedding) in an essential way.

2. Background

2.1. Cyclic graphs

The objects we consider in this paper arise in many different contexts, and have
thus been given many different names. Following Dennis Sullivan we shall call
them cyclic graphs. We shall think of a cyclic graph G p as an abstract graph G,
in which loops and multiple edges are allowed, together with a cyclic order on the
edges at each vertex v of G (so a loop at v appears twice in this order). Two
cyclic graphs are isomorphic as cyclic graphs if there is a graph isomorphism
between the underlying graphs which respects the cyclic orders. These objects are
called `graphs with rotation systems' in [18, 19]; in [18] it is shown that a certain
class of directed cyclic graphs classi®es Morse±Smale ¯ows up to topological
equivalence. A similar result for foliations is proved in [19]. Cyclic graphs are
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also known as `fatgraphs', for example in [17], where they are used to analyse the
moduli spaces of Riemann surfaces with distinguished points. In [9] cyclic graphs,
referred to as `fat graphs', are used to study moduli spaces of ¯at connections
on Riemann surfaces. Note, however, that the term `fatgraphs', or `fat graphs', is
also used for distinct but related objects, in which each edge is `thickened' to
form a band.

Cyclic graphs arise naturally from graphs embedded into oriented surfaces. In
fact, as has been known for a long time, they correspond exactly to 2-cell
embeddings, where each component of the complement of the embedded graph is
a disc; see [8, 13, 14]. In abstract terms, cyclic graphs without isolated vertices
are sometimes known as combinatorial premaps, a combinatorial map being a
connected cyclic graph. Combinatorial premaps give perhaps the most concise
formal de®nition of cyclic graphs: a combinatorial premap is a triple �S; v; p�
where S is a ®nite set, v a ®xed-point free involution on S, and p any permutation
of S. One can think of S as the set of half-edges, or darts, or ¯ags of the graph, v
as identifying which pairs of half-edges are joined to form an edge, and the cycles
of p as corresponding to the vertices, with each cycle giving the cyclic order on
the half-edges meeting at the corresponding vertex. The survey paper [24] gives
the de®nition and basic properties of combinatorial maps.

Trivalent cyclic graphs, known as Chinese characters or Feynman diagrams,
arise in rather different contexts. Examples include perturbative Chern±Simons
theory and its application to the construction of 3-manifold invariants; see [11, 12,
16], for example. Trivalent cyclic graphs also arise in the study of Vassiliev
invariants (see [2] for example), as do cyclic graphs with only one vertex; these,
as described in § 3, are equivalent to chord diagrams.

2.2. The Tutte polynomial

The Tutte polynomial, or Whitney±Tutte dichromate is an important graph
invariant introduced by Tutte in [22], based on the work of Whitney [27]. Given a
graph G and an edge e of G we shall say that e is a loop if its endvertices are the
same, a bridge if its removal increases the number of components of G, and that e
is ordinary if it is neither a loop nor a bridge. We write Gÿ e for the graph
formed from G by deleting the edge e, and, if e is not a loop, G=e for the graph
formed from G by contracting e, that is, deleting e and identifying its endvertices
to form a single vertex. We may de®ne the Tutte polynomial T�G; X; Y � in terms
of contraction and deletion as follows:

T�G; X; Y � � Y n

if G is a graph with n loops and no other edges, and

T�G; X; Y� � T�G=e; X; Y� � T�Gÿ e; X; Y� if e is an ordinary edge of G,

XT�G=e; X; Y� if e is a bridge in G.

�
It is not a priori clear that these relations have a solution ± this was shown by
Tutte, who de®ned the polynomial in a very different way, in terms of a spanning tree
expansion. Note that the Tutte polynomial is genuinely a polynomial, rather than
an array of coef®cients written as a polynomial, as shown by the multiplicative
structure: if G1 and G2 are graphs which are either completely disjoint, or share no
edges and exactly one vertex, then we have T�G1 È G2� � T�G1�T�G2�.
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The Tutte polynomial is important because it carries a huge amount of
information about the graph. For example, evaluating the Tutte polynomial at
particular points one obtains the number of spanning trees of G, the number of
acyclic orientations of G, the number of k-colourings of G, and the number of
nowhere-zero k-¯ows on G. For a much longer list see [26]. In fact, the Tutte
polynomial is the universal contraction-deletion invariant of graphs: if a graph
invariant f satis®es

f�G� � jf�G=e� � tf�Gÿ e� if e is an ordinary edge of G,

Xf�G=e� if e is a bridge in G,

�
then f can be calculated from the Tutte polynomial, together with the number of
components, number of vertices, and number of edges of G; see [4, 20].

In other contexts, natural generalizations of the Tutte polynomial play important
roles. For example, the Tutte polynomial for signed graphs described in [15]
specializes to the Kauffman bracket for link diagrams, and thus the Jones
polynomial, while the Tutte polynomials for weighted graphs de®ned in [10, 21]
play an important role in statistical physics. A single invariant of graphs with
arbitrary labels, or colours, on the edges is introduced in [4]. This has a universal
property like that of the Tutte polynomial ± from it can be calculated any invariant
satisfying contraction deletion relations where the coef®cients may depend upon the
colour of the edge. This includes all the examples mentioned above.

Our aim in this paper is to generalize the Tutte polynomial to graphs with a
very different kind of extra structure, namely to cyclic graphs. For coloured
graphs, it is clear where to start looking for a generalization of the Tutte
polynomial ± one takes the de®ning contraction-deletion relations, or the spanning
tree expansion, and replaces the coef®cients involved with coef®cients depending
on the colour of the edge. The problem is then to show that for the coef®cients
one chooses the result is well de®ned, or, taking the more general approach of [4],
to ®nd the set of all possible coef®cients for which the result is well de®ned. In
the case of cyclic graphs the situation is very different, as it is not at all clear
how we should attempt to generalize the Tutte polynomial. What turns out to be
the key concept, the algebraic rank of a chord diagram de®ned in § 3, has nothing
whatsoever to do with any de®nition of the Tutte polynomial.

2.3. Contraction-deletion for cyclic graphs

If e is an edge of a cyclic graph G p, let G p ÿ e be the cyclic graph obtained
by deleting the edge e from the underlying graph and from whichever cyclic
order(s) it occurs in. The de®nition for contraction is slightly more complicated,
but just as natural: if e � xy is not a loop, G p =e has G=e as underlying graph,
and inherits all cyclic orders from G p except at the vertex �xy� formed by
identifying x and y. Here the cyclic order is obtained by uniting those at x and y
using the position of the edge e, as shown in Figure 1.

As in the graph case, contraction and deletion behave well with respect to each other
± whenever the cyclic graphs involved are de®ned we have G p =e= f > G p = f =e,
G p =eÿ f > G p ÿ f =e and, of course, G p ÿ eÿ f > G p ÿ f ÿ e. These impor-
tant operations arise naturally in many contexts. For one example speci®c to
cyclic graphs see [9].

515graphs on orientable surfaces



The notion of disjoint union for cyclic graphs is exactly the same as for graphs.
The one-point join needs a little more explanation. If G

p 1

1 and G
p 2

2 are cyclic
graphs sharing no edges and exactly one vertex v, then G p is the one-point join
of G

p 1

1 and G
p 2

2 if G p is the union of G
p 1

1 and G
p 2

2 as graphs, all its cyclic
orders respect those of G

p 1

1 and G
p 2

2 , and in the order at v, all edges of G
p 1

1 , say,
precede all those of G

p 2

2 . If this is the case we write G p � G
p 1

1 ´ G
p 2

2 . This is
illustrated in Figure 2.

Our aim in this paper is to construct the universal cyclic graph invariant C
satisfying the contraction-deletion relations

C�G p� � C�G p =e� � C�G p ÿ e� if e is an ordinary edge of G p,

XC�G p =e� if e is a bridge in G p.

�
�1�

This turns out to be a three-variable polynomial C�G p; X; Y ; Z �, the cyclic graph
polynomial. Like the Tutte polynomial, the cyclic graph polynomial is multi-
plicative on disjoint unions and one-point joins. However, as we shall see later,
the cyclic graph polynomial is an essential generalization of the Tutte polynomial,
and depends very strongly on the cyclic orders, that is, on the embedding of the
underlying graph. In the next section we discuss one-vertex cyclic graphs, that is,
chord diagrams, and do the groundwork necessary to de®ne the cyclic graph
polynomial and to show that it exists.

3. Chord diagrams

We shall construct the cyclic graph polynomial using contraction-deletion
relations to reduce an arbitrary cyclic graph to cyclic graphs consisting of a single
vertex and some number of loops. While ordinary graphs with one vertex and n
loops are all isomorphic, this is not the case for cyclic graphs. Labelling the loops
with 1; 2; . . . ; n, say, we ®nd that the cyclic order at the vertex gives rise to a
cyclic pairing, that is, a cyclic order on the multi-set f1; 1; 2; 2; . . . ; n; ng, and
two cyclic graphs are isomorphic if and only if the corresponding cyclic pairings
can be interchanged by permuting the labels.

Cyclic pairings also arise in other contexts. One example is the study of
Vassiliev invariants (see [3], for example), where they have been called
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n-con®gurations [25]. Let K be an oriented singular knot with n singular points.
When K is traversed once, each singular point is visited twice, so the cyclic order
in which the singular points are visited generates a cyclic pairing. Any invariant
of order n depends by de®nition only on the cyclic pairing generated by K.

A very different context in which cyclic pairings arise is that of DNA
sequencing by hybridization [1]. The task is to reconstruct a sequence from the
multi-set of its short subsequences. In a certain limit, the only ambiguities likely
to arise come from subsequences occurring exactly twice. The pattern in which
these occur is a pairing; for the details of why it is only the corresponding cyclic
pairing which matters see [1].

However they arise, cyclic pairings are conveniently represented by chord
diagrams, or just diagrams. A chord diagram of degree n consists of 2n distinct
points on the unit circle, together with n chords pairing them off. Two chord
diagrams are isomorphic if one can be transformed into the other by a map from
the unit circle to itself which preserves cyclic order. Note that if two one-vertex
cyclic graphs G

p 1

1 , G
p 2

2 are represented by diagrams D1, D2 then G
p 1

1 is

isomorphic to G
p 2

2 if and only if D1 is isomorphic to D2. In what follows we shall
not distinguish a one-vertex cyclic graph from the corresponding chord diagram.

In order to construct the cyclic graph polynomial C it turns out that we have to
consider functions f on chord diagrams satisfying a certain four-term relation.
This arises from considering cyclic graphs G p with exactly two vertices having at
least two edges e and f between these vertices, as well as any number of loops.
Applying the contraction-deletion relations (1) starting with e or with f will give
two different expressions for C�G p� in terms of the values of C on one-vertex
cyclic graphs, that is, on chord diagrams. The four-term relation we consider
arises from equating these expressions; the details are in § 5.

Let D1, D 01, D2 and D2
0 be the diagrams shown in Figure 3, where the part of

the diagram indicated by dotted lines is arbitrary, but the same in all four cases.
In the ®gure, the chord f , as well as any chords not shown, may or may not cross
the chord e.

We consider functions f satisfying the relation

f�D1� ÿ f�D01� � f�D2� ÿ f�D02�: �2�
There is a similar four-term relation that arises in the study of Vassiliev
invariants (see [2], for example); this relation is implied by (2). However, (2)
does not imply the Vassiliev condition that f should vanish on a diagram
containing a chord intersecting no other chords. Thus the space of solutions to (2)
neither contains nor is contained in the space of weight systems giving rise to
Vassiliev invariants.

517graphs on orientable surfaces

Figure 3. The chord diagrams involved in the four-term relation (2).



In studying solutions to (2) we will work upwards through diagrams with
increasing numbers of chords. Thus we shall be particularly interested in solutions
f that vanish on all diagrams with at most nÿ 1 chords. Such f then satisfy
f�D1� � f�D2� when the diagrams D1 and D2 shown in Figure 3 have degree n.
We shall thus say that two diagrams are related by an R-operation, or a single
step rotation about the chord e, if they are related as D1 and D2 in Figure 3, that
is, if one can be obtained from the other by ®xing a chord e and that part of the
diagram on one side of e, and rotating the rest of the diagram by one step. We
shall say that diagrams D1 and D2 are R-equivalent, and write D1 , D2, if they
are related by a sequence of R-operations. In the rest of the paper we shall show
that constructing contraction-deletion invariants of arbitrary cyclic graphs can be
reduced to the study of functions on one-vertex cyclic graphs, that is, chord
diagrams, that are invariants of R-equivalence.

Part of the information in a chord diagram can be conveniently represented as a
graph, the interlace graph or intersection graph of the pairing. The vertices are
the chords of the diagram, and two chords are adjacent if they intersect. In the
context of Vassiliev invariants, these graphs have been studied in depth by
Chmutov, Duzhin and Lando [5, 6, 7]. For the importance of interlace graphs in a
very different context see [1], for example. By the interlace matrix M�D� of a
diagram D we shall mean the adjacency matrix of the interlace graph, so if the
chords are labelled with 1; 2; . . . ; n, then M�D�i j is 1 if i 6� j and the chords i and j
intersect, and 0 otherwise. We shall consider M�D� as a matrix over the ®eld F2

with two elements, so M�D� is both symmetric and antisymmetric, and has zeros
on the diagonal. In particular, the rank of M�D� is even. The key notion we shall
need is that of the rank r�D� of a diagram D, given by

r�D� � 1
2

rank�M�D��:
Note that r�D� has no connection with the usual graph rank.

Suppose that D1 and D2 are related by a single step rotation about a chord e,
and that f is the chord one of whose endpoints is moved by the rotation. Then
whether f intersects a chord g is changed by the rotation if and only if g 6� e; f
and e intersects g. Thus M�D1� can be transformed into M�D2� by adding (over
F2) the row corresponding to e to that corresponding to f , and then adding the
column corresponding to e to that corresponding to f . Thus M�D1� and M�D2�
have the same rank over F2 . This gives the main property of the rank r�D� that
we shall need, namely that

r�D1� � r�D2� if D1 , D2 : �3�
Another invariant of R-equivalence is of course n�D�, the degree or number of
chords of D. Rather surprisingly, it will turn out that these invariants together
classify chord diagrams up to R-equivalence.

For two diagrams D1 and D2 there is a standard (ambiguous) notion of their
sum: we write D � D1 � D2 if D can be obtained from D1 and D2 as shown in
Figure 4, noting that there are in general many such D, as the points at which the
diagrams are attached may be chosen freely.

When the diagrams represent singular knots then the sum of the diagrams
corresponds to the connected sum of the knots, which is ambiguous in the same
way. Here, where the diagrams represent one-vertex cyclic graphs, the sum of the
diagrams corresponds to the one-point join of the cyclic graphs.
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We shall need the following simple fact about the sum of two diagrams: since
the matrix M�D� is the direct sum of M�D1� and M�D2�, we have

r�D� � r�D1� � r�D2� �4�
whenever D is the sum of D1 and D2.

To de®ne the cyclic graph polynomial we need one more natural de®nition: a
subdiagram of a diagram D is a diagram obtained by deleting some subset of the
chords of D. Thus if D has n chords, it has exactly 2n subdiagrams, some of
which will be isomorphic. We shall write Dÿ e for the subdiagram of D formed
by deleting a chord e.

4. Construction of the cyclic graph polynomial

In this section we describe the construction of the cyclic graph polynomial C;
in the next section we shall prove that it is well de®ned.

For a cyclic graph G p with exactly one vertex set

C�G p� �
X

D 0 Ì D

Y n�D 0 �Z r�D 0�; �5�

where the sum is over all 2n�D� subdiagrams of the chord diagram D
corresponding to G p. For a connected cyclic graph G p with more than one
vertex consider the relations

C�G p� � C�G p =e� � C�G p ÿ e� �6�
for each ordinary edge e of G p, and

C�G p� � XC�G p =e� �7�
for each bridge e in G p. We shall use the relations to de®ne C inductively on
connected cyclic graphs, although at ®rst sight it is not clear this is possible, as
the relations may be inconsistent. Our main result is that there is indeed an
isomorphism-invariant function of cyclic graphs satisfying (5), (6) and (7). We
write G for the set of isomorphism classes of cyclic graphs, and G� for the set of
isomorphism classes of connected cyclic graphs.

Theorem 1. There is a unique function C: G � ! Z�X; Y ; Z � satisfying
conditions (5)±(7).

Note that uniqueness is immediate given the existence of C: we can use (5)±(7)
inductively to calculate C on cyclic graphs with increasing numbers of edges.

Having de®ned C on connected cyclic graphs, we extend it to all cyclic graphs
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by setting

C�Gp 1

1 È G
p 2

2 � � C�Gp 1

1 �C�Gp 2

2 � �8�
for vertex-disjoint cyclic graphs G

p 1

1 and G
p 2

2 . Theorem 1 then has the following
immediate corollary.

Corollary 2. The invariant C: G! Z�X; Y ; Z � de®ned above satis®es (6)
and (7) for an arbitrary cyclic graph G p. Also,

C�Gp 1

1 ´ G
p 2

2 � � C�Gp 1

1 �C�Gp 2

2 � �9�
whenever G

p 1

1 ´ G
p 2

2 is the one-point join of two cyclic graphs G
p 1

1 and G
p 2

2 .

Proof. The ®rst part can be seen immediately from Theorem 1 by applying
relations (6) and (7) to a component of G p. If D1 and D2 are diagrams and
D � D1 � D2, then as D1

0 and D2
0 run over all subdiagrams of D1 and D2, the

sum D1
0 � D2

0 runs over all subdiagrams of D. As both n� � and, from (4), r� �
are additive on diagrams, this proves (9) for one-vertex cyclic graphs. The same
equation for all cyclic graphs follows by applying relations (6) and (7). . . . . .A

5. Existence

We shall prove Theorem 1 by verifying that the result obtained by applying
(5)±(7) to calculate C�G p� depends only on G p, and not on the order in which
we apply relations (6) and (7) to the edges of G p. The proof will come in two
parts ± most of the work will be needed to reduce the various possible cases to
one simple special case. In this case the condition needed turns out to be exactly
our four-term relation (2), so we start by showing that the function C de®ned by
(5) satis®es this relation.

It turns out to be convenient to consider separately the coef®cients of different
powers of Y and Z arising in C. For a chord diagram D, let Ci j�D� be the number

of subdiagrams of D which have i chords and rank j. Recalling that we do not
distinguish D and the associated one-vertex cyclic graph G p, we have, from (5),

C�D� �
X
i; j

Ci j�D�Y i Z j:

Lemma 3. Let D1, D1
0, D2 and D2

0 be chord diagrams related as in Figure 3.
Then we have

Ci j�D1� ÿ Ci j�D1
0 � � Ci j�D2� ÿ Ci j�D2

0 �; �10�
for every i and j. Also, the same equation holds with Ci j replaced by C throughout.

Proof. Let e be the chord about which we rotate to convert D1 to D2, so
D1
0 � D1 ÿ e and D2

0 � D2 ÿ e. Then the left-hand side of (10) counts the number
of subdiagrams of D1 containing e with degree i and rank j, while the right-hand
side counts the same quantity for D2 . Suppose that E1 is the subdiagram of D1

formed by deleting a certain set S of chords, and that e 62 S, so e is a chord of E1.
Let E2 be formed by deleting the same set S of chords from D2. Then E1 and E2

are either identical, or are related by a single step rotation about e. Thus we have
n�E1� � n�E2� and, from (3), r�E1� � r�E2�, so (10) follows. The same equation
for C is an immediate consequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . .A
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We are now ready to prove Theorem 1. The strategy of the proof is the same as
(one approach) for the Tutte polynomial, or the coloured Tutte polynomial (see
[4]). However, the key part of the proof, where the chord diagrams come into
play, is very different from the corresponding parts of these other proofs. In fact,
with the bene®t of hindsight, the existence of the Tutte polynomial itself can be
proved in this way with essentially no work ± what is the heart of the proof here,
showing that the results obtained by expanding using (6) for each of two parallel
edges are the same, is a triviality for the Tutte polynomial, as the cyclic graphs
obtained differ only in the cyclic orders.

Proof of Theorem 1. Throughout we consider only connected cyclic graphs,
even when this is not explicitly stated. As mentioned above, relations (6) and (7)
give a recipe for calculating C�G p� from its values on cyclic graphs with fewer
edges, unless G p has only loops, when (5) applies. However, there may be many
choices as to how to apply the relations. More formally, let G p be a cyclic graph
and a a total order on the edges of G p. We de®ne Ca�G p� to be the result of applying
relations (6) and (7) to the edges of G p in the opposite order to that given by a. Thus
if e is the last edge of G p which is not a loop, then Ca�G p� � XCa�G p =e� if e is a
bridge, and Ca�G p� � Ca�G p =e� � Ca�G p ÿ e� if e is ordinary. If G p consists

only of loops then Ca�G p� is given by (5).
Writing e�G p� � e�G� for the number of edges of G p, we shall take as

induction hypothesis the following statement (Hr):

if e�G p�< r, then Ca�G p� � Ca0 �G p� (Hr)

for any two orders a and a0 on the edges of G p. Assuming (Hr), and given G p

with e�G p�< r, we shall write C�G p� for the common value of the Ca�G p�.
Note that if (Hr) holds then the function C�G p� de®ned on cyclic graphs G p with
e�G p�< r satis®es (5)±(7) by construction. Expanding down to one-vertex cyclic
graphs shows that this function also satis®es (9).

The statements (H0) and (H1) are vacuously true, so suppose from now on that
r > 2, and that (Hrÿ1) holds. Given a connected cyclic graph G p with e�G p� � r,

and an edge e of G p that is not a loop, let

Ce�G p� � C�G p =e� � C�G p ÿ e� if e is ordinary,

XC�G p =e� if e is a bridge.

�
To prove (Hr) it suf®ces to show that

Ce�G p� � Cf �G p� �11�
whenever e�G p� � r and e and f are distinct edges of G p that are not loops. If e and
f are bridges, this is immediate: we have Ce�G p� � XC�G p =e� � X 2C�G p =e= f �,
as (7) holds for cyclic graphs with fewer than r edges. Similarly, Cf �G p� �
X 2C�G p = f =e�, but G p =e= f and G p = f =e are isomorphic, so (11) holds. If e is a
bridge, say, and f is ordinary, then the argument is similar; note that f is ordinary in
G p =e, and e is a bridge in G p = f and G p ÿ f .

We may thus suppose that e and f are both ordinary. We now consider four
cases, according to whether e and f are parallel (have the same endpoints), and
whether deleting both disconnects G p.
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Case 1: e, f not parallel, G p ÿ eÿ f connected. In this case e is ordinary in
G p = f and G p ÿ f , while f is ordinary in G p =e and G p ÿ e, so (11) is
again immediate.

Case 2: e, f not parallel, G p ÿ eÿ f disconnected. In this case e is ordinary in
G p = f , but is a bridge in G p ÿ f , and similarly with e and f swapped. Thus

Ce�G p� � C�G p =e� � C�G p ÿ e�
� C�G p =e= f � � C�G p =eÿ f � � XC�G p ÿ e= f �;

while

Cf �G p� � C�G p = f =e� � C�G p = f ÿ e� � XC�G p ÿ f =e�:
Now G p =e= f > G p = f =e. Although G p =eÿ f and G p ÿ e= f are not in general
isomorphic, they are both joins of G

p 1

1 and G
p 2

2 , the components of G p ÿ eÿ f .
Since (Hrÿ1) holds, and the cyclic graphs involved have fewer than r edges, we
can apply (9), showing that

C�G p =eÿ f � � C�Gp 1

1 �C�Gp 2

2 � � C�G p ÿ e= f �:
Thus Ce�G p� � C�G p =e= f � � �X � 1�C�Gp 1

1 �C�Gp 2

2 � � Cf �G p�, so (11) holds
in this case.

Case 3: e, f parallel, G p ÿ eÿ f connected. This case is the heart of the proof.
In this case f is ordinary in G p ÿ e, but is a loop in G p =e. We thus have

Ce�G p� � C�G p =e� � C�G p ÿ e= f � � C�G p ÿ eÿ f �;
Cf �G p� � C�G p = f � � C�G p ÿ f =e� � C�G p ÿ f ÿ e�;

and (11) is equivalent to

C�G p =e� ÿ C�G p =eÿ f � � C�G p = f � ÿ C�G p = f ÿ e�: �12�
(i) Suppose ®rst that G p has a bridge h. Then h is a bridge in all four cyclic

graphs appearing in (12). Thus (12) reduces to

XC�G p =e=h� ÿ XC�G p =eÿ f =h� � XC�G p = f =h� ÿ XC�G p = f ÿ e=h�: �13�
Since contractions and deletions commute, this is X times condition (12) for the
smaller cyclic graph G p =h. As (12) is equivalent to (11), which holds for cyclic
graphs with fewer than r edges, (13) and thus (12) hold in this case.

(ii) Suppose now that G p has an ordinary edge h not parallel to e and f . Then
h is ordinary in G p =e and G p ÿ e. As C satis®es (6) for cyclic graphs with
fewer than r edges, we have

Ce�G p� � C�G p =e� � C�G p ÿ e�
� C�G p =e=h� � C�G p =eÿ h� � C�G p ÿ e=h� � C�G p ÿ eÿ h�
� C�G p =h=e� � C�G p =hÿ e� � C�G p ÿ h=e� � C�G p ÿ hÿ e�
� C�G p =h� � C�G p ÿ h�:

The same argument also gives Cf �G� � C�G p =h� � C�G p ÿ h�, so (11) holds in
this case.
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(iii) By (i) and (ii), in proving (12) we may assume that every edge of G p is
either a loop, or is parallel to e and f . Thus G p has only two vertices, the
endvertices x and y of e and f . Let us write a for that part of the cyclic order at x
lying between e and f , and b for the part between f and e. Similarly, let g be the
order at y between e and f , and d that between f and e. This is illustrated in
Figure 5, where the order at each vertex is anticlockwise around the vertex. For
reasons of space we have not labelled the vertices; x is the vertex on the left, y
the one on the right. The dotted edges indicate one possibility for the edges of
G p ÿ eÿ f .

For such a cyclic graph G p the four cyclic graphs involved in (12) are as
shown in Figure 6.

In terms of chord diagrams, (12) thus becomes

C�D1� ÿ C�D1
0 � � C�D2� ÿ C�D2

0 �; �14�
where the diagrams D1, D1

0, D2 and D2
0 are as shown in Figure 7.

Now (14) asserts that C�D� ÿ C�Dÿ e� is unaffected by rotating the parts of D
on either side of a chord e of D. Any such rotation can be made up of single step
rotations, so (14) and hence (12) follow from Lemma 3, completing the proof in
this case.
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Figure 5. A two-vertex cyclic graph with (at least) two ordinary edges, e and f .

Figure 6. The four cyclic graphs appearing in (12).



Case 4: e, f parallel, G p ÿ eÿ f disconnected. Now f is a loop in G p =e and a
bridge in G p ÿ e, so

Ce�G p� � C�G p =e� � XC�G p ÿ e= f �;
Cf �G p� � C�G p = f � � XC�G p ÿ f =e�;

and (11) can be written as

C�G p =e� ÿ XC�G p =eÿ f � � C�G p = f � ÿ XC�G p = f ÿ e�: �15�
This appears to contradict (12), but we shall see that this is not the case, as (15)
only applies to rather special cyclic graphs G p.

Arguing as before, we can reduce the proof of (15) to the case where G p has
only two vertices. De®ning a, b, g, d and the diagrams D1, D1

0, D2, D2
0 as above,

we see that (15) is exactly the condition

C�D1� ÿ XC�D1
0 � � C�D2� ÿ XC�D2

0 �: �16�
Since G p ÿ eÿ f is disconnected, no chord joins either of a or b to either of g
or d. Thus D1

0 and D2
0 are both sums of the diagrams

Arguing as in the proof of Corollary 2, we see that C�D1
0 � � C�D2

0 �, so (16)
follows from (14) which we have already proved. Thus (11) holds in this case also.

As the cases checked cover all possibilities, (11) holds for all connected r-edge
cyclic graphs. This proves (Hr), and hence, by induction on r, the theorem. . .A

Having established the existence and uniqueness of the cyclic graph polynomial,
we next describe its universal property.

6. Universality

In this section we show that any invariant of connected cyclic graphs
satisfying (6) and (7) can be calculated from the cyclic graph polynomial. This
of course implies that any cyclic graph invariant satisfying (6), (7) and (8) can be
obtained from the cyclic graph polynomial. The key step is to show that n�D� and
r�D� together form a complete set of invariants for the relation of R-equivalence
on chord diagrams.

Recall that the sum of two diagrams D1 and D2 is obtained by choosing a point
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Pi (not the endpoint of a chord) on the boundary of each Di , joining the bounding
circles at these points and then deforming the result until it is again a circle. By
choosing the Pi differently this sum can in general be formed in many different
ways. We start by showing that all these possible sums are R-equivalent.

Lemma 4. If diagrams D and D 0 are both sums of diagrams D1 and D2, then
we have D , D 0.

Proof. As we can vary the points P1 and P2 used to de®ne the sum one at a
time, it is suf®cient to consider moving P1 past an endpoint x of a chord in D1,
that is, to show the equivalence of the two diagrams in Figure 8.

We do this using anticlockwise rotations about chords of D2, each moving only
the point x. This is illustrated for an example below, the dotted line indicating the
path followed by the point x:

In fact the illustration more or less gives our proof. For each position of the
point x with respect to the chords of D2 other than the ®nal position, there is a
rotation as described above: we rotate about the ®rst chord of D2 encountered
when moving anticlockwise around the circle from x. Also, this operation is
invertible, except from the initial position, by rotating clockwise about the ®rst
chord encountered when moving clockwise around the circle from x. There are
only ®nitely many positions for x , so performing a sequence of anticlockwise
rotations as above starting from the initial position, we either repeat or reach the
desired ®nal position of x. To see that we cannot repeat, suppose that the position
of x after i steps is the same as after j steps, with i < j. Using invertibility, we
®nd that the positions after iÿ 1 and jÿ 1 steps are the same, and so are those
after 0 and jÿ i steps. In other words, after jÿ i > 0 steps we again reach the
initial position of x. However, there is no rotation as above leading to this
position. This contradiction proves that there is a sequence of rotations
transforming one diagram in Figure 8 into the other, completing the proof of
the lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A
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Figure 8. Moving D 2 past an endpoint of a chord of D1.



For i > 0 and 0 < j < 1
2

i, let Di; j be the diagram consisting of j pairs of chords
intersecting only each other, and iÿ 2 j chords with no intersections, arranged
around the circle as illustrated below for D7;2:

Lemma 5. Any diagram D is R-equivalent to some Di; j .

Proof. We use induction on n�D�; the case n�D� � 0 is trivial. Suppose then
that n�D�> 1, that the lemma holds for diagrams with fewer than n�D� chords,
and that e is a chord of D. Then Dÿ e , Di; j for some i, j. Consider the
sequence S of rotations transforming Dÿ e into Di; j . We can construct a
corresponding sequence S 0 starting with D such that S 0 becomes S when the chord
e is deleted from every diagram in the sequence. (If the edge e is adjacent to the
chord that we rotate about at some step in S, we may have to rotate two steps in
S 0 to achieve the effect of a single step rotation in S.) The sequence S 0 ends in

some D 0 with e 2 D 0, such that D , D 0, and D 0 ÿ e � Di; j . The structure of Di; j

is such that the chord e added can only intersect two components of Di; j . It is
thus easy to check that the component C of D 0 containing e is always equivalent
to some Di 0; j 0 . Using Lemma 4 we can move the remaining components of
D 0nC � Di 00; j 00 , say, `out of the way'. Thus from C , Di 0; j 0 we can deduce that
D 0 , Di 0 � i 00; j 0 � j 00 . As D , D 0, this completes the proof of the lemma. . . . . .A

It is now easy to prove the universal property of the cyclic graph polynomial C.
As before, we split C according to the powers of Y and Z, writing
C �P i; j Ci jY

iZ j, where each Ci j is a map from G � to Z�X �. This de®nition of
Ci j agrees on chord diagrams with that given in the previous section. Also, by
equating coef®cients of Y iZ j, we see from Theorem 1 that each Ci j satis®es (6)
and (7).

Suppose that R is a commutative ring, and that x 2 R. For each i, j, as the map
Ci j takes values in Z�X �, we can compose it with the natural ring homomorphism
from Z�X � to R mapping X to x, obtaining a map Ci j�x� from G � to R. Note that
in®nite sums of the functions Ci j�x� make sense, as only ®nitely many are non-
zero on any given cyclic graph.

Theorem 6. Let R be a commutative ring and x 2 R. Then f: G � ! R satis®es

f�G p� � f�G p =e� � f�G p ÿ e� if e is ordinary,

xf�G p =e� if e is a bridge

�
�17�

if and only if there are coef®cients li j 2 R, with 0 < j < 1
2

i, such that

f �
X
i; j

li j Ci j�x�: �18�
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Furthermore, when f does satisfy (17), the li j are uniquely determined
by (18).

Proof. Theorem 1 implies that each Ci j�x� satis®es (17). Thus if f has the
form (18), then f satis®es (17).

Suppose then that f satis®es (17). We shall de®ne the li j inductively, starting
by setting l00 equal to the value of f on the cyclic graph with one vertex and
no loops.

Suppose that n > 1, and that we have chosen li j, with i < n, such that
f�G p� �P i< n li j Ci j�G p; x� for all one-vertex cyclic graphs G p with fewer than
n loops. Let f0 � fÿPi<n li jCi j�x�, so f0 satis®es (17) and vanishes on one-
vertex cyclic graphs with fewer than n loops. Suppose that D1 and D2 are
diagrams with n chords related by a single step rotation, as shown in Figure 9.

Let a be the point moved by the rotation, b be empty, and g and d be the parts of
the diagrams shown in Figure 9. Consider the following two-vertex cyclic graph:

Applying the relation (17) for f0 to this cyclic graph (a special case of that
shown in Figure 5), we can deduce that

f0�D1� ÿ f0�D1 ÿ g� � f0�D2� ÿ f0�D2 ÿ g�:
As D1 ÿ g and D2 ÿ g have fewer than n chords, this gives f0�D1� � f0�D2�.
Thus, on diagrams D with n chords, f0�D� depends only on the R-equivalence
class of D, and hence, by Lemma 5, only on r�D�. As Cn j�D; x� is 1 if r�D� � j
and 0 otherwise, we have f0 �P j ln jCn j�D; x� on n-chord diagrams if and only
if ln j � f0�Dn; j�.

Proceeding by induction on n, we see that there are unique li j such that (18)
holds for all one-vertex cyclic graphs G p. The same equation for all connected
cyclic graphs follows from (17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

7. The genus of a chord diagram

As noted in the introduction, connected cyclic graphs correspond to graphs
embedded into oriented surfaces in such a way that each face (component of the
complement of the embedded graph) is a topological disk. In particular, to each
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cyclic graph G p there is associated a closed orientable surface j�G p�, which can be
speci®ed by giving its genus. It thus makes sense to de®ne the genus g�G p� of a
connected cyclic graph G p as the genus of j�G p�. For a chord diagram D we de®ne
the genus g�D� to be the genus of the corresponding one-vertex cyclic graph.

Suppose now that D1 and D2 are two cyclic graphs related by a single step
rotation, that is, related as D1 and D2 in Figure 3. A straightforward local check
shows that g�D1� � g�D2�, so on chord diagrams the genus g is an invariant of
R-equivalence. Now g�Di; j� � j � r�Di; j�. As the rank r is also an invariant of

R-equivalence, it follows from Lemma 5 that g�D� � r�D� for all chord diagrams
D. Thus an alternative way of writing our de®nition of the cyclic graph
polynomial on one-vertex cyclic graphs G p is

C�G p� �
X

D 0 Ì D

Y n�D 0�Z g�D 0�;

where D is the chord diagram corresponding to G p. This de®nition is perhaps
more natural than (5) when thinking of graphs embedded into surfaces.

However, while we could have introduced the cyclic graph polynomial
considering only g�D� and not r�D�, the use of r�D� has the advantage that it is
de®ned as a function of the interlace graph of the diagram D. This notion of rank
can be extended to graphs that are not interlace graphs of chord diagrams, which
may be useful in some other context. More importantly, considering r�D� shows
immediately that g�D� depends only on the interlace graph of D, which does not
by any means contain all the information about D. Also, the operation of
considering subdiagrams is rather unnatural when thought of in terms of graphs
embedded into surfaces, but the effect on the interlace graph, or on the interlace
matrix, is very natural.

8. Further properties

We start by showing that, like the Tutte polynomial, the cyclic graph
polynomial has a spanning tree expansion, although one very different from that
for the Tutte polynomial.

Let G p be a connected cyclic graph with a total order a on its edges, and let
T be a spanning tree of G p. We say that an edge e of T is internally active (with
respect to T , G p and a) if e is the ®rst edge of G p (in the order a) between the
two components of T ÿ e. We say that an edge e of G p which is not in T is
externally active (with respect to T , G p and a) if e is the ®rst edge on the
unique cycle of T È e. These de®nitions were introduced by Tutte [23].

Given a set S of edges of G p n T , we write DT�S� for the chord diagram
induced by S (with respect to T), de®ned as follows: starting from the cyclic
graph G p, ®rst contract all edges of T to obtain a one-vertex cyclic graph. Then
delete all edges other than those in S. One can also think of DT�S� as the chord
diagram with chords corresponding to the edges of S where the outer circle is
given by traversing the spanning tree T in the unique way speci®ed by the cyclic
orders at the vertices.

We are now ready to give the spanning tree expansion of C�G p�: we de®ne the
weight of T with respect to G p and a as

w�T ; G p; a� � X i
X

S

Y jS jZ r�DT �S��;
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where i is the number of internally active edges of T , and the sum is over all
subsets of the set of externally active edges. Summing over spanning trees we set

w�G p;a� �
X

T

w�T ;G p;a�:

Theorem 7. For any connected cyclic graph G p and any order a on the
edges of G p, we have w�G p;a� � C�G p�.

Proof. We use induction on the number of edges of G p which are not loops.
If G p consists only of loops, then G p has a unique spanning tree (with no edges),
and every edge of G p is externally active. It is easy to see that the de®nition of
w�G p;a� then coincides with that of C�G p�.

Suppose then that G p does not consist entirely of loops, and let e be the last
edge of G p (in the order a) which is not a loop. If e is a bridge, then e is
contained in every spanning tree of G p, and is always internally active. Thus
w�G p;a� � Xw�G p =e;a�. If e is ordinary, then as it is the last edge which is
not a loop, it is never active, either internally or externally. Also, the spanning
trees of G p containing e correspond to those of G p =e, while the spanning trees not
containing e correspond to those of G p ÿ e, where the correspondence preserves the
activities of the edges. Thus w�G p;a� � w�G p =e;a� � w�G p ÿ e;a�. The result
now follows from the induction hypothesis and the recurrence relations for C . . . A

We now turn to the relationship between the cyclic graph polynomial and the
Tutte polynomial.

Setting Z � 1 removes the dependence of C�G p� on the cyclic orders at the
vertices. More precisely, writing G for the graph underlying G p, one can easily
check that C�G p; X; Y ; 1� � T�G; X; Y � 1�. Thus the cyclic graph polynomial C
inherits the full power of the Tutte polynomial as a graph invariant. More
importantly, C genuinely does strengthen the Tutte polynomial, depending very
strongly on the embedding of the graph G into an orientable surface. Computer
calculations show that C distinguishes all three non-isomorphic 2-cell embeddings
of K4, all fourteen of the cube on eight vertices, and forty-eight of the ®fty of K5.
Note that it makes sense to talk of the value of C on an embedding into an
orientable (as opposed to oriented) surface: such an embedding gives rise to two
cyclic graphs, one for each orientation, related by reversing all the cyclic orders.
As a chord diagram and its mirror image have the same rank, C takes the same
value on these two cyclic graphs.

Finally we give another small illustration of the order dependence by
mentioning one speci®c evaluation of the cyclic graph polynomial which behaves
in an interesting way. On cyclic graphs in which each vertex has degree 3, one
can show that C�0; ÿ4; 1

4
� satis®es the IHX and AS (antisymmetry) relations

arising in perturbative Chern±Simons theory; see [11] for example. To prove this
one can use the contraction-deletion relations to reduce to the case when all edges
not directly involved in the relation are loops. This case reduces to a ®nite check
by using the R-equivalence of any diagram to some Di; j . Of course this is not a
good way of looking for many solutions to these relations on trivalent cyclic
graphs ± we have imposed a very strong additional condition, that the solution
should extend in a certain way to arbitrary cyclic graphs. Nevertheless, it is
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interesting to see that this one particular function does extend to all cyclic
graphs, and it illustrates the essential dependence of the cyclic graph polynomial
on the embedding.
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