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Abstract
Population density methods provide promising time-saving alternatives to
direct Monte Carlo simulations of neuronal network activity, in which
one tracks the state of thousands of individual neurons and synapses. A
population density method has been found to be roughly a hundred times
faster than direct simulation for various test networks of integrate-and-fire
model neurons with instantaneous excitatory and inhibitory post-synaptic
conductances. In this method, neurons are grouped into large populations
of similar neurons. For each population, one calculates the evolution of a
probability density function (PDF) which describes the distribution of neurons
over state space. The population firing rate is then given by the total flux
of probability across the threshold voltage for firing an action potential.
Extending the method beyond instantaneous synapses is necessary for obtaining
accurate results, because synaptic kinetics play an important role in network
dynamics. Embellishments incorporating more realistic synaptic kinetics for
the underlying neuron model increase the dimension of the PDF, which was
one-dimensional in the instantaneous synapse case. This increase in dimension
causes a substantial increase in computation time to find the exact PDF,
decreasing the computational speed advantage of the population density method
over direct Monte Carlo simulation. We report here on a one-dimensional model
of the PDF for neurons with arbitrary synaptic kinetics. The method is more
accurate than the mean-field method in the steady state, where the mean-field
approximation works best, and also under dynamic-stimulus conditions. The
method is much faster than direct simulations. Limitations of the method are
demonstrated, and possible improvements are discussed.
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1. Introduction

Computational neuroscientists hope to gain an understanding of the properties of large-scale
neuronal networks in part from the simulation of such networks. The time to simulate an
arbitrary network by conventional methods grows quadratically with the size of the network
(Hansel et al 1998). A substantial part of the computational load stems from the stochastic
nature of signal processing in the central nervous system. For example, the input from the
lateral geniculate nucleus to primary visual cortex is stochastic, and communications within
the cortex are also stochastic as a consequence of unreliable synaptic transmission, random
synaptic delays and random magnitudes of unitary post-synaptic conductance events. The fact
that the cortex consists of a huge number of neurons, of the order of 108 for primary visual
cortex alone, each with stochastic behaviour, suggests that a statistical mechanical approach
might be of some benefit in modelling network activity. In the population density method
one lumps similar neurons together into a population and then one tracks the distribution of
neurons over state space instead of tracking the state of individual neurons and synapses. This
distribution is described by the population density function, whose dimension depends on the
underlying single-neuron model. In this method, interacting populations are coupled via their
firing rates. Thus, an intrinsic limitation of the method is that it does not allow one to examine
precise patterns in spike firing times, including the synchronous firing of two or more neurons.

In the population density method, the computation time depends on the number of
populations rather than the number of neurons. This can result in a dramatic reduction
in computation time. For example, a quarter-scale model of two hypercolumns in the cat
primary visual cortex by Somers et al (1995) utilized a network of 2205 neurons with 180 000
synapses. The same network in a population density realization consisted of a network of
18 populations. The population density method for this orientation tuning example required
about one-hundredth of the computational time of a direct Monte Carlo simulation (Nykamp
and Tranchina 2000). In this model, neurons were lumped into populations on the basis of
similarity of preferred orientation. In other models it might be more appropriate to lump
neurons together into discrete populations according to proximity and synaptic connectivity.

In a previous paper (Nykamp and Tranchina 2000), a new population density method
introduced by Knight et al (1996), Omurtag et al (2000), Sirovich et al (2000) and Knight
(2000) for simulating large neural networks was explored. In that paper, the unitary post-
synaptic conductance time course for both excitation and inhibition was assumed to be fast on
the time scale of the resting membrane time constant. Thus, the unitary events were modelled
by Dirac delta functions and the population density function was one-dimensional. In a later
paper, Nykamp and Tranchina (2001) extended the method to handle slow inhibitory synapses
by making a mean-field approximation for the slow inhibitory conductance variable. We now
explore a new methodology for extending the population density method to handle realistic
(arbitrary) inhibitory and excitatory kinetics.

Several factors motivate this extension. The excitatory conductances gated by the NMDA
(N -methyl-D-aspartic acid) class of glutamate receptors have very slow kinetics (Fain 1999).
NMDA receptors are found throughout the central nervous system and are thought to play
an important role in synaptic plasticity. The metabotropic class of glutamate receptors gate a
cation conductance through a second messenger system with slow kinetics (Fain 1999). Even
so-called fast excitatory conductances gated by ionotropic receptors are not always fast on the
time scale of the membrane time constant (Koch 1999). A number of studies have shown that
gross qualitative features of dynamical network activity are affected dramatically by synaptic
kinetics (Abbott and van Vreeswijk 1993, Treves 1993, Nykamp and Tranchina 2001, Wang
1999). Furthermore, there are theoretical reasons to believe that the details of synaptic kinetics
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in general determine the stability of asynchronous activity in coupled networks of integrate-
and-fire neurons (Abbott and van Vreeswijk 1993, Treves 1993).

The slow kinetics of the excitatory conductances cannot be treated by the same methods
used by Nykamp and Tranchina (2001) for slow inhibitory conductances. A mean-field
approximation for both the inhibitory and the excitatory conductance random variables would
remove all intrinsic noise from the system. The only remaining randomness would be from the
initial random distribution of neurons over voltage. As a consequence, the firing rate would
depend on the initial probability density function (PDF). Moreover, the leakage term would
tend to synchronize the population (Knight 1972). One could avoid these problems by injecting
artificial extrinsic noise into the system (e.g., Abbott and van Vreeswijk (1993)). The method
described in this paper is an alternative method that keeps the details of the intrinsic synaptic
noise in the system.

Allowing for realistic synaptic kinetics in the population density method leads to a high-
dimensional partial differential-integral equation for the evolution of the PDF. Increasing the
dimension of the system leads to an exponential increase in computational time. We present
here a one-dimensional model for the high-dimensional stochastic process given by neurons
with non-instantaneous synaptic kinetics. The evolution equation for the corresponding one-
dimensional PDF is a partial differential-integral equation. We show how this equation can be
approximated by an advection–diffusion–dispersion equation. We demonstrate the accuracy,
computational efficiency and limitations of our one-dimensional model.

2. The integrate-and-fire neuron

As in previous models (Nykamp and Tranchina 2000, Knight et al 1996, Omurtag et al
2000, Sirovich et al 2000, Knight 2000, Brunel and Hakim 1999), the implementation of
the population density approach is based on an integrate-and-fire, single-compartment (point)
neuron. We model the synaptic input as a current injection. The essence of the dimension
problem is captured with this simplification. Further work will be required to incorporate slow
synaptic conductances in the population density framework.

The temporal evolution of a neuron’s transmembrane voltage, V (t), is given by the
stochastic differential equation (SDE) (for SDEs throughout this paper, upper case letters
are used to indicate random quantities):

c
dV

dt
= −gr(V − Er) + E(t) − I (t), (1)

where c is the membrane capacitance, gr and Er are the resting membrane conductance and
equilibrium potential, and E(t) and I (t) are the stochastic excitatory and inhibitory synaptic
currents, respectively. When V (t) reaches a fixed threshold voltage vth, the neuron is said to
fire a spike, and the voltage is reset to the voltage vreset. Since we model the inhibitory synaptic
input as current injection rather than conductance modulation, we impose a lower bound Ei on
the membrane potential.

2.1. Synaptic currents

The synaptic currents, E(t) and I (t), vary in response to excitatory and inhibitory input,
respectively. Upon the arrival of a synaptic input, the synaptic current increases in magnitude
and then decays exponentially. This rise of the current can be modelled as either an
instantaneous jump (which we call first-order kinetics) or a smooth exponential increase
(second-order kinetics). The theory developed in this paper does not depend on the waveforms
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for the unitary post-synaptic current events. We denote the rise and decay time constants by
τr and τd respectively (τr < τd).

For first-order kinetics, the evolution of the excitatory synaptic current, E(t), is governed
by

τ e
d

dE

dt
= −E(t) +

Ne∑
k=1

Qk
eδ(t − T k

e ), (2)

and similarly for the inhibitory synaptic current, I (t):

τ i
d

dI

dt
= −I (t) +

Ni∑
k=1

Qk
i δ(t − T k

i ), (3)

where Ne/i is the total number of excitatory/inhibitory unitary synaptic events; T k
e/i is the

random arrival time of the kth excitatory/inhibitory unitary synaptic event and Qk
e/i denotes the

total charge delivered to the synapse by an unitary excitatory/inhibitory event. Instantaneous
synaptic kinetics correspond to the case in which τ

e/i
d = 0. In this case the synaptic events are

modelled by Dirac delta functions:

E(t) =
Ne∑
k=1

Qk
eδ(t − T k

e ), I (t) =
Ni∑
k=1

Qk
i δ(t − T k

i ). (4)

For second-order kinetics, we introduce the auxiliary variable S(t). The evolution of the
excitatory synaptic current, E(t), is governed by

τ e
d

dE

dt
= −E(t) + S(t) (5)

τ e
r

dS

dt
= −S(t) +

Ne∑
k=1

Qk
eδ(t − T k

e ), (6)

and similarly for the inhibitory synaptic current I (t).
These ODEs for the synaptic currents imply that

E(t) =
Ne∑
k=1

Qk
ehe(t − T k

e ), I (t) =
Ni∑
k=1

Qk
i hi(t − T k

i ) (7)

where the waveform he/i(t) is given by either a single exponential (8) for first-order kinetics
or a difference of exponentials (9) for second-order kinetics:

h(t) = 1

τd
e− t

τd H(t) (8)

or

h(t) = 1

τd − τr

(
e− t

τd − e− t
τr

)
H(t), (9)

where H(t) is the Heaviside step function. Note that, by construction, he/i(t) has unit area. To
take into account the random fluctuations in unitary excitatory post-synaptic current (EPSC)
events and unitary inhibitory post-synaptic current events, the Qk

e/i (total charge delivered per
event) are independent identically distributed random variables (IIDRVs). The arrival time of
the post-synaptic current events, T k

e/i, are random variables governed by an inhomogeneous
Poisson process. The Poisson assumption is valid in the regime where each neuron receives
random input from numerous presynaptic neurons with conditionally independent spike trains.
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To facilitate the presentation, we combine (1) and (7), rewriting the resulting SDE as

dV

dt
=
{

− 1

τm
(V − Er) +

Ne∑
k=1

Ak
ehe(t − T k

e ) −
Ni∑
k=1

Ak
i he(t − T k

i )

}
for Ei < v < vth,

(10)

where Ae/i = Qe/i/c, and τm = gr/c is the resting membrane time constant. Since the Ak
e/i are

random variables, we define the density function for Ae/i, fAe/i(x). Details of this distribution
are given in appendix A.

2.2. Mean-field and Monte Carlo methods

In this paper, we compare population density results with direct Monte Carlo simulations and
also with a mean-field approximation for the activity of populations of neurons. The mean-
field method assumes that there are many synaptic events on the time scale of the synaptic time
constant, so that the post-synaptic current is well approximated by its mean. In a mean-field
approximation for activity in a network of interacting populations of integrate-and-fire neurons
corresponding to the population density network, the mean excitatory and inhibitory synaptic
currents in each population are expressed as functionals of the firing rates of the presynaptic
populations (Bressloff and Coombes 2000). In the case of a single exponential unitary event,
the evolution equation for the mean excitatory current, µE(t), is obtained by taking the expected
value of (2) over the random charges, Qk

e , and over the random arrival times, T k
e , which are

governed by a modulated (inhomogeneous) Poisson process. The result is

τ e
d

dµE

dt
= −µE(t) + µQeνe(t) (11)

where µQe is the average total charge injected by a unitary event, and νe(t) is the sum of the
rates of synaptic inputs from all the presynaptic populations. The evolution for µI (t) is similar.

The firing rate for any population, r(t), is computed by making the approximation that
the net synaptic currents change slowly on the time scale of the interspike interval. Thus, r(t)
is computed by (i) holding the net synaptic currents fixed at their expected values at time t ; (ii)
calculating the time T to cross spike threshold starting from the reset voltage, including any
refractory period τref and (iii) setting the firing rate r(t) equal to 1/T . The resulting nonlinear
equation that gives firing rate, r , as a function of synaptic currents is

r(t) = 1

τm ln
[

Vreset−Er−(µE(t)−µI (t))/gr

Vth−Vreset−(µE(t)−µI (t))/gr

]
+ τref

, (12)

for [(µE(t) − µI (t))/gr] > (Vth − Vreset), and r(t) = 0 otherwise.
In our Monte Carlo simulations, the external input to a population consists of a Poisson

train of events with random magnitudes. When populations are coupled together, precise spike
times are determined and a random delay and magnitude are chosen for each post-synaptic
event. The same distribution functions are used for delays and magnitudes in the PDF and
Monte Carlo methods.

3. The population density model

With non-instantaneous synaptic kinetics, the state of a neuron is described not only by its
membrane potential V (t), but also by one (first-order kinetics) or two (second-order kinetics)
variables for the state of each of the synaptic currents E(t) and I (t). Thus, the state space
for the neuron is high-dimensional. We point out that in the population density framework,
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the population firing rate is given by the total flux of probability across the threshold voltage,
vth. This flux depends on the marginal density of the membrane potential V (t), ρ

V
(v, t). We

develop a one-dimensional model below which gives an approximate evolution equation for
ρ

V
(v, t).

As in Nykamp and Tranchina (2000), we assume that the populations consist of a large
number of biophysically identical neurons. We also assume that the populations are sparsely
connected. That is, any pair of neurons in a given population have very few presynaptic
neurons in common. The assumption of sparse connectivity is required by the assumption
of conditional independence of the input events across all neurons (Nykamp and Tranchina
2000). It has been demonstrated that, in practice, the connectivity of model networks need not
be terribly sparse in order to get accurate population density results (Nykamp and Tranchina
2000).

We begin by stating in section 3.1 the full high-dimensional evolution equation. Rather
than embarking on the computationally intensive effort of numerically solving this evolution
equation, we develop a one-dimensional model for ρ

V
(v, t) in section 3.2. An exact evolution

equation for ρ
V
(v, t) in a related simpler problem will serve as a basis for our one-dimensional

model.

3.1. The high-dimensional evolution equation

Before developing our one-dimensional model, we state the exact high-dimensional evolution
equation. For simplicity, let us consider the case of first-order synaptic input for both excitation
and inhibition. In this case, the state of a neuron is determined by its membrane potentialV (t), a
single-state variable for the excitatory current E(t), and a single-state variable for the inhibitory
current I (t). For convenience of presentation, we replace the state variables E(t) and I (t)

with X(t) = E(t)/c and Y (t) = I (t)/c (units of V s−1), respectively.
This three-dimensional state space gives rise to a three-dimensional PDF for the state of

a neuron, ρ(v, x, y, t), where

ρ(v, x, y, t) dv dx dy = Pr{V (t) ∈ (v, v + dv),X(t) ∈ (x, x + dx), Y (t) ∈ (y, y + dy)}
(13)

for v ∈ (Ei, vth), x ∈ (0,∞) and y ∈ (0,∞). The corresponding evolution equation for this
PDF is the following three-dimensional conservation equation:

∂ρ

∂t
(v, x, y, t) = −∇ · 	J (v, x, y, t) + δ(v − vreset)JU (τref , x, y, t) (14)

where 	J (v, x, y, t) = (JV (v, x, y, t), JX(v, x, y, t), JY (v, x, y, t)) is the flux of probability
per unit area at the point (v, x, y) in the three-dimensional state space, and JU(τref , x, y, t) is
the flux of neurons returning from a refractory period. The components of the flux vector
	J (v, x, y, t) represent the flux across voltage, flux across normalized excitatory synaptic

current, and flux across normalized inhibitory synaptic current respectively:

JV (v, x, y, t) = − 1

τm
(v − Er)ρ(v, x, y, t) + xρ(v, x, y, t) − yρ(v, x, y, t) (15)

JX(v, x, y, t) = − 1

τ e
d

xρ(v, x, y, t) + νe(t)

∫ x

0
F̃Ae((x − x ′)τ e

d )ρ(v, x ′, y, t) dx ′ (16)

JY (v, x, y, t) = − 1

τ i
d

yρ(v, x, y, t) + νi(t)

∫ y

0
F̃Ai((y − y ′)τ i

d)ρ(v, x, y ′, t) dy ′ (17)

where F̃Ae/i(x) = ∫∞
x

fAe/i(a) da is the complementary cumulative distribution function for
Ae/i.
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A neuron fires a spike when its voltage crosses vth, so the total flux across threshold is the
population firing rate:

r(t) =
∫ ∫

JV (vth, x, y, t) dx dy. (18)

Replacing JV (vth, x, y, t) in (18) with the expression given in equation (15) shows that the
firing rate depends on the marginal flux of probability across the threshold potential vth:

r(t) =
[
− 1

τm
(vth − Er) + µX|V (vth, t) − µY |V (vth, t)

]
ρ

V
(vth, t), (19)

whereµX|V (v, t) andµY |V (v, t) are the means of the state variablesX(t) andY (t), respectively,
given the membrane potential V (t). That is to say, the firing rate can be found by considering
the flux of probability across threshold of the marginal probability density for the membrane
potential V (t): r(t) = JV (vth, t). In a full treatment of the problem, the firing rate cannot
be found from ρ

V
(vth, t) alone as it also depends on two unknown functions µX|V (vth, t) and

µY |V (vth, t).
This three-dimensional system would become five-dimensional if a more realistic

difference of exponentials waveform (second-order kinetics) were used for the unitary post-
synaptic events. Including additional currents, such as a NMDA excitatory current in addition
to an AMPA (alpha-amino-3-hydroxy-5-methyl-4 isoxazole proprionic acid) excitatory
current, would further increase the dimension. Rather than solve such computationally
intensive high-dimensional systems, we focus on the one-dimensional voltage marginal density
function ρ

V
(v, t). This one-dimensional model is not obtained by starting with (14), but rather

by considering a different but related stochastic process.

3.2. Evolution equation for the one-dimensional model

The evolution equation for the one-dimensional model corresponding to (14) is

∂ρ
V

∂t
(v, t) = − ∂

∂v
J (v, t) + δ(v − vreset)JU (τref , t), (20)

with corresponding firing rate r(t) = JV (vth, t). The flux of neurons returning from a refractory
state is given by the firing rate JU(τref , t) = r(t − τref).

In order to develop this one-dimensional model, we begin in section 3.2.1 by considering
the simpler problem obtained by eliminating the lower bound on voltage and by removing the
voltage reset. We then in section 3.2.4 include a voltage threshold, voltage reset and a limit
on the level of membrane hyperpolarization. The corresponding evolution equation for the
instantaneous synapse problem can be found by using the techniques in Nykamp and Tranchina
(2000) and Brunel and Hakim (1999).

3.2.1. Without voltage reset or lower boundary. When voltage threshold and reset in (10) are
removed, V (t) moves randomly on the real line. In this case, the voltage V (t) can be thought
of as Poisson shot noise arising from numerous independent events. We will demonstrate that,
as a consequence, the characteristic function of the random voltage has a surprisingly tractable
analytical form. This characteristic function can be differentiated with respect to time and then
inverse-Fourier-transformed to give an evolution equation for the voltage density function of
integrate-and-fire neurons.

The evolution equation for ρ
V
(v, t) in this unconstrained random motion problem will

serve as a basis for a one-dimensional model for the actual problem of interest.
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The evolution equation for the one-dimensional model corresponding to (20) when there
is no voltage threshold is

∂ρ
V

∂t
(v, t) = − ∂

∂v
J (v, t). (21)

For the sake of simplifying notation in this presentation, we will develop the evolution equation
for excitatory input only. The addition of the inhibitory input is similar. To emphasize this
similarity, we remove the subscripts for excitation. We find the evolution equation for ρ

V
(v, t)

by considering its corresponding characteristic function, ρ̂
V
(ξ, t):

ρ̂
V
(ξ, t) =

∫
ρ

V
(v, t)e−iξv dv (22)

= E
[
e−iξV (t)

]
. (23)

We note that the expression for the characteristic function is the expected value of e−iξV (t), a
function of our random variable V (t). We solve (10) explicitly to find

V (t) = Er +
N∑

k=1

Akq(t − Tk), (24)

where q(t) = h(t) ∗
(

e− t
τm H(t)

)
, and ∗ denotes the convolution operator. We emphasize that

there are three classes of random variables in the expression for V (t): the random number of
events, N , the arrival times of those events, Tk , and the random amplitudes of those events,
Ak . Because the arrival times are governed by a Poisson process, the number of events N is
Poisson distributed. We insert (24) for V (t) into (23) to obtain and expected value expression
in which the random variables are represented explicitly:

ρ̂
V
(ξ, t) = E

[
exp

{
− iξ

(
Er +

N∑
k=1

Akq(t − Tk)

)}]
. (25)

If we first condition on N , that is fix the number of events, then {T1, T2, . . . , TN } are IIDRVs,
as are {A1, A2, . . . , AN }. With this conditioning in place, we are taking the expected
value of a product of IIDRVs. For any set of IIDRVs, {Z1, Z2, . . . , ZM}, we note that

E

[∏M
k=1 Zk

]
= (E[Z])M , where Z denotes any arbitrary Zk . The conditioning on N requires

that we first take the expected value over random variables A and T and then over N :

ρ̂
V
(ξ, t) = exp (−iξEr)E

(
E

[
exp

{
− iξ

N∑
k=1

Akq(t − Tk)

}∣∣∣N = n

])
(26)

= exp (−iξEr)E

{(
E
[
e−iξAq(t−T )

])N}
. (27)

To take the expected value in (27) over T , we use the fact that the density function fT (t) for the
random arrival times is given by the rate of events (probability per unit time) at time t divided
by the integral of the rate up to time t . Thus,

fT (t ′) = ν(t ′)/µ(t) for − ∞ < t ′ < t, (28)

where µ(t) = ∫ t

−∞ ν(t ′) dt ′. We point out that the expected value for random number of events
N up to time t is given by µ(t). The expected value in (27) over random event amplitude A

is performed using the previously defined density function fA(x). Thus, the overall inner
expected value in (27), still keeping N fixed, is given by

E
[
e−iξAq(t−T )

] =
∫ ∞

0
dx fA(x)

∫ t

−∞
e−iξxq(t−t ′) ν(t

′)
µ(t)

dt ′. (29)



Population density methods for large-scale modelling of neuronal networks 149

Substituting (29) into (27) gives

ρ̂
V
(ξ, t) = exp (−iξEr)E

[(∫ ∞

0
dx fA(x)

∫ t

−∞
e−iξxq(t−t ′) ν(t

′)
µ(t)

dt ′
)N]

. (30)

The expectation computation in (30) is of the form E
[
zN
]
, where

z =
∫ ∞

0
dx fA(x)

∫ t

−∞
e−iξxq(t−t ′) ν(t

′)
µ(t)

dt ′. (31)

To proceed, since N is Poisson distributed with mean µ(t), it follows that

E[zN ] =
∑ 1

k!
(zµ(t))k e−µ(t) (32)

= ezµ(t)e−µ(t) (33)

= exp [zµ(t) − µ(t)] . (34)

Using result (34) in (30) gives

ρ̂
V
(ξ, t) = exp (−iξEr) exp

{∫ ∞

0
dx fA(x)

∫ t

−∞
dt ′ν(t ′)e−iξxq(t−t ′) − µ(t)

}
(35)

= exp (−iξEr) exp

{∫ ∞

0
dx fA(x)

∫ t

−∞
dt ′ν(t ′)

[
e−iξxq(t−t ′) − 1

]}
. (36)

In going from (35) to (36) we used the definition of µ(t) and the fact that
∫∞

0 fA(x) = 1.
Equation (36) is the characteristic function for the voltage marginal PDF. To find the

evolution equation for the voltage marginal PDF, we differentiate this characteristic function
with respect to time and take the inverse Fourier transform. We note that q(t) as given above
satisfies the differential equation dq

dt = − 1
τm

q(t) + h(t), since q(t) is the unitary post-synaptic
potential waveform (i.e. the solution to (10) for one event when Er = 0 mV and A = 1 mV).
Using this fact, the temporal derivative (here, it is assumed that h(t) is not a Dirac delta function
and hence q(0) = 0) is

∂ρ̂
V

∂t
= ρ̂

V
(ξ, t)

∫ ∞

0
dx fA(x)

∫ t

−∞
dt ′ν(t ′)e−iξxq(t−t ′)

[
−iξx

d

dt
q(t − t ′)

]
(37)

= ρ̂
V
(ξ, t)

∫ ∞

0
dx fA(x)

∫ t

−∞
dt ′ν(t ′)e−iξxq(t−t ′)(−iξ)x

×
[
− 1

τm
q(t − t ′) + h(t − t ′)

]
(38)

= iξ

τm

∫ ∞

0
xfA(x) dx

∫ t

−∞
ν(t ′)q(t − t ′)e−iξxq(t−t ′) dt ′ρ̂

V
(ξ, t)

−iξ
∫ ∞

0
xfA(x) dx

∫ t

−∞
ν(t ′)h(t − t ′)e−iξxq(t−t ′) dt ′ρ̂

V
(ξ, t) (39)

= − ξ

τm

∂ρ̂
V

∂ξ
− iξ

τm
Erρ̂V

− iξ
∫ ∞

0
xfA(x) dx

×
∫ t

−∞
ν(t ′)h(t − t ′)e−iξxq(t−t ′) dt ′ρ̂

V
(ξ, t). (40)

In the transition between equations (39) and (40) we used the fact that the ξ derivative of the
characteristic function (36) is

∂ρ̂
V

∂ξ
= −iErρ̂V

(ξ, t) − ix
∫ ∞

0
dx fA(x)

∫ t

−∞
dt ′ν(t ′)q(t − t ′)e−iξxq(t−t ′)ρ̂

V
(ξ, t). (41)
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Now that we have an evolution equation (40) for the characteristic function (36), we need
only take the inverse Fourier transform of (40) to find the evolution equation for the voltage
marginal PDF. This evolution equation specialized for excitatory input is

∂ρ
V

∂t
= − ∂

∂v

{
− 1

τm
(v − Er)ρV

(v, t) + Je(v, t)

}
, (42)

where

Je(v, t) =
∫ t

−∞
dt ′he(t − t ′)νe(t

′)
∫ ∞

0
dx xfAe(x) ρ

V
(v − xqe(t − t ′), t). (43)

Substituting the expression for the flux (43) into the model evolution equation (42) leads to a
partial differential integral equation for the evolution of ρ

V
(v, t). In the special case where the

unitary post-synaptic current event amplitude is fixed rather than random, the excitatory flux
is of a particularly simple form:

Je(v, t) =
∫ t

−∞
dt ′ νe(t

′) Aehe(t − t ′) ρ
V
(v − Aeqe(t − t ′), t). (44)

Equation (44) for the excitatory component of the probability flux indicates that the present flux
includes attenuated surviving effects from the history of earlier unitary post-synaptic current
events. Note that, in (44), Aehe(t − t ′) is the surviving post-synaptic current at time t from a
unitary event at time t ′, and Aeqe(t − t ′) is the surviving post-synaptic potential response to
that event. An alternative approach towards the density function for shot noise can be found
in Grzywacz et al (1988).

3.2.2. Partial differential equation approximation for the evolution equation. In an effort
to circumvent the computational demands required to numerically solve such an equation,
we expand ρ

V
(v, t) in a Taylor series around v and rewrite the expression for the excitatory

flux (43) as

Je(v, t) =
∞∑

j=0

[
(−1)j

j !
µ

A
j+1
e

∫ t

−∞
he(t − t ′)qj

e (t − t ′)νe(t
′) dt ′

]
∂jρ

V

∂vj
. (45)

If inhibitory synaptic input is added as well, each excitatory term in (42) will have a
corresponding inhibitory term like those in (45) added to it.

The first three terms of the sum in (45) correspond to the excitatory advection (drift),
diffusion and dispersion, respectively. As demonstrated below, an excellent approximation for
unitary post-synaptic currents of physiological magnitude is obtained by keeping only these
first three terms provided that the EPSP size is not too large. The coefficients of the j th partial
derivative of ρ

V
(v, t) with respect to v decay rapidly for physiologically reasonable EPSP

magnitudes as j increases; hence, the higher-order terms in the Taylor series expansion are

small. When νe is constant, the coefficients of
∂j ρ

V

∂vj can be evaluated easily. For example,
when the average unitary EPSP size is 0.5 mV and the unitary post-synaptic current is a single
exponential with a decay time constant equal to τm/2, the first five normalized coefficients
in (45) are 1.0000, −0.4167, 0.1250, −0.0313 and 0.0069. Notice that the magnitude of the
fourth term is only 3% of the advection (first-term) coefficient. Figure 1 shows the normalized
magnitude of the first few coefficients as a function of the EPSP size and synaptic time constant
of decay. By truncating the Taylor series after three terms, we are able to gain an accurate
approximation to (45) that is numerically more advantageous to compute than (43). (In our
numerical method we do not incur any additional computational cost by keeping the dispersion
term. Our numerical method employs an upwind difference scheme for the derivative of the
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Figure 1. The first few steady-state coefficients from the Taylor series for the excitatory flux
normalized by the first coefficient as a function of the time constant of synaptic decay. Above
each panel the mean peak response size is given. As the peak response increases, the higher-order
terms become more relevant. The curves represent the second term (solid curve), third term (dotted
curve), fourth term (dashed-dotted curve), and fifth term (dashed curve).

advection flux in order to ensure stability in the absence of synaptic input. This gives a
pentadiagonal matrix equation to be solved at each time step. With the dispersion term, the
matrix is still pentadiagonal.)

We may rewrite the advection–diffusion–dispersion approximation for the excitatory flux
in (45) as

Je(v, t) ≈ ce
1ae(t)ρ(v, t) + 2ce

2De(t)
∂ρ

∂v
(v, t) + 3ce

3Fe(t)
∂2ρ

∂v2
(v, t) (46)

where ce
1ae(t), 2ce

2De(t), 3ce
3Fe(t) are the coefficients corresponding to advection, diffusion

and dispersion, respectively:

ae(t) =
∫ t

−∞
he(t − t ′)νe(t

′) dt ′ (47)

De(t) =
∫ t

−∞
qe(t − t ′)he(t − t ′)νe(t

′) dt ′ (48)

Fe(t) =
∫ t

−∞
q2
e (t − t ′)he(t − t ′)νe(t

′) dt ′ (49)

ce
k = (−1)k−1 1

k!
µAk

e
. (50)

In appendix E, we discuss the relationship between the coefficients above and the moments of
the distribution function for V (t) as determined by the SDE (1).
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Figure 2. A snapshot of the population density function compared with the histogram formed by
one Monte Carlo simulation of 5000 ‘neurons’. In (b) the advection–diffusion–dispersion (solid
curve) and diffusion (dashed curve) approximations are shown. The bin width for the histogram
in (b) is 1 mV. The arrival rate of excitation (dark curve) and inhibition (grey curve) are shown
in (a). Parameters: τe = 5 ms, τi = 10 ms, µEPSP,peak = 4 mV, µIPSP,peak = 1 mV. This snapshot
was taken at t = 150 ms.

In the case of instantaneous synaptic kinetics, the advection–diffusion–dispersion
approximation to the corresponding one-dimensional process is

Je(v, t) ≈ νe(t) c
e
1ρ(v, t) + νe(t) c

e
2
∂ρ

∂v
(v, t) + νe(t) c

e
3
∂2ρ

∂v2
(v, t), (51)

where ce
k are as above. The inhibitory flux expression is similar. We show in appendix D that,

in the limit of instantaneous synaptic kinetics, our one-dimensional model converges to the
flux expression for the case of instantaneous synaptic kinetics.

3.2.3. Accuracy of the advection–diffusion–dispersion approximation. To demonstrate the
accuracy of the advection–diffusion–dispersion approximation, we show in figure 2(a) a
snapshot comparing different estimates of the PDF for a non-instantaneous synapse problem
without voltage reset and without a lower boundary for V . In this example, the arrival times
of excitatory and inhibitory events are governed by independent modulated Poisson processes
at prescribed rates. Figure 2(a) shows the synaptic input rates. (In general, the prescribed
input rates in our illustrations are arbitrary, and they were chosen as a convenient way of
providing temporally rich input.) One estimate of the PDF in 2(b) (histogram) is a relative
frequency estimate obtained by a Monte Carlo simulation with 5000 uncoupled neurons. The
other (solid curve) is obtained from solving (21) with the advection–diffusion–dispersion
approximation (46). We see near-perfect agreement between our numerical solution of the
advection–diffusion–dispersion evolution equation and Monte Carlo simulation.

In this example, we chose a large size for the unitary excitatory event (µEPSP,peak = 4 mV)
in order to show that our advection–diffusion–dispersion approximation does well even under
these circumstances. This is a surprising result in light of the data presented in figure 1. For
large enough EPSP (around 2 mV), skew becomes evident in the PDF and the results given
by the advection–diffusion–dispersion approximation can be easily distinguished from those
given by the advection–diffusion approximation (dashed curve in figure 2(b)).

In the next section we examine the result of including voltage threshold and reset along
with a lower inhibitory voltage boundary.
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3.2.4. With voltage reset and (sticky) lower boundary. In section 3.2 we gave the evolution
equation for our one-dimensional model:

∂ρ
V

∂t
(v, t) = − ∂

∂v
J (v, t) + δ(v − vreset)JU (τref , t). (52)

Our one-dimensional model is obtained from the development in section 3.2.1 by restricting
V (t) to Ei � V (t) < vth and assuming that the flux across v, J (v, t), is given by (43) in
the restricted domain after suitable modifications taking into account the absorbing boundary
at vth and the no-flux condition at Ei. We emphasize that this procedure cannot be justified
rigorously. It simply provides one method for obtaining a one-dimensional model for a truly
high-dimensional stochastic process.

Inserting a lower voltage boundary at v = Ei makes ρ
V
(v, t) = 0 for v < Ei, and hence no

contribution to the flux can be made by neurons with V (t) < Ei. Thus the limits of integration
for the excitatory flux (43) should be modified to reflect this voltage dependency:

Je(v, t) =
∫ t

−∞
dt ′he(t − t ′)νe(t

′)
∫ V−Ei

qe(t−t ′)

0
dx xfAe(x) ρ

V

(
v − xqe(t − t ′), t

)
. (53)

If we expand ρ
V
(v − xqe(t − t ′), t) in a Taylor series, then for our particular density function

for Ae given in appendix A:

Je(v, t) =
∞∑
k=0

(−1)k

k!

∫ t

−∞
dt ′he(t − t ′)qk

e (t − t ′)νe(t
′)µAk+1

e

× (
1 − F(qe(t − t ′); z, k)) ∂k

∂vk
ρ

V
(v, t) (54)

where z = v − Ei, F (q; z, k) = e− z
aq
∑n+k

l=0
1
l!

(
z
aq

)l

and a is a parameter of the density

function for Ae (see appendix A). We wish to compute the coefficients of
∂kρ

V

∂vk in an efficient
manner. When the unitary event waveform is a sum of exponentials or a gamma function, the
convolution of ν(t) with h(t)qk(t) can be computed by updating a system of ODEs at each time
step. The term F(qe(t − t ′); z, k) in (54) stands in the way of this method, but this problem can
be eliminated by expanding F(qe(t); z, k) in a Taylor series around the peak value of qe(t),
qpeak = µEPSP,peak

µAe
:

F(q; z, k) ≈ F(qpeak; z, k) + F ′(qpeak; z, k)
(
q − qpeak

)
. (55)

In practice we find a zero-order Taylor series (F(q(t); z, k) ≈ F(qpeak; z, k)) to be sufficient:
that is, the contribution from including higher-order terms is negligible. Similar arguments
can be made for the inhibitory flux.

Since the advection–diffusion–dispersion approximation involves three derivatives of the
density function and we place a lower bound on the hyperpolarization level of a neuron, we
need a total of six conditions on ρ

V
(v, t) for the domain v > vreset and the domain v < vreset:

(1) from conservation of probability, the flux across threshold is also the flux across the reset
potential; (2) from the absorbing boundary at vth, we find that that ρ

V
(vth, t) = 0; (3) by a local

analysis at vth one can self-consistently solve for the second v-derivative of ρ
V
(v, t) in terms of

the first v-derivative; (4) ρ
V
(v+

reset, t) = ρ
V
(v−

reset, t); (5) in order to incorporate a lower bound

on the membrane potential, the flux at Ei is equal to zero and (6) we set
∂ρ

V

∂v
|v=Ei = 0. This

is done for simplicity in our numerical method, and we consider this boundary condition to
be part of our model. (A correct but unwieldy boundary condition at v = Ei can be found
by a method analogous to that used at v = vth. The flux at v = Ei is set equal to zero and
then differentiated with respect to time. The time derivatives of ρ

V
are then replaced by the
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Figure 3. Snapshots of the PDF for a population responding to excitation only. (a) The arrival rate
of excitation. (b) The PDF at t = 236 ms. (c) The PDF at 262 ms. Parameters: τe = 5 ms and
µEPSP,peak = 0.5 mV. The voltage bin width in this and all following population density figures is
0.25 mV.

right-hand side of the conservation equation.) Details of these boundary conditions are given
in appendix B.

The effects of adding these boundaries are illustrated by snapshots of the PDF in figures 3
and 4. In order to demonstrate the effects of threshold and reset, figures 3(b) and (c) show the
PDF with only an excitatory current applied. Figure 3(b) shows the population at the onset
of firing following a period of quiescence and figure 3(c) shows the population after it has
been firing for a prolonged period. When the population is just starting to fire, we see a large
buildup of neurons near the threshold and a small buildup near the reset. After a prolonged
period of firing the neurons spread out fairly uniformly between the reset voltage and threshold.
This latter result is consistent with the stationary distribution analytically found in Brunel and
Hakim (1999) and modified in appendix C to take into account the refractory period. Note
that our model PDF must be zero at threshold, but the histogram does not approach zero as
v approaches vth. In the actual random process realized by the Monte Carlo simulations, it
is possible for neurons to be infinitesimally close to the threshold. In fact (19) shows that in
the true random process, the firing rate r(t) is proportional to the marginal density function
evaluated at threshold, ρV (v, t).

In order to demonstrate behaviour near the lower inhibitory boundary, figures 4(b)–(e)
show the PDF with only inhibitory current. As the population approaches the lower boundary
(figure 4(b)) there is good agreement between the population density method and Monte Carlo
simulation. However, in figure 4(c) we see that once the Monte Carlo population builds up
at this lower boundary, neurons in the one-dimensional model start to diffuse away from the
boundary. This results in the population density model leading the Monte Carlo simulation
in a return to rest as the inhibitory input diminishes (figure 4(d)). Once the neurons near the
resting potential, the model and simulation return to strong agreement, as shown in figure 4(e).
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Figure 4. Snapshots of the PDF for a population responding to inhibition only. (a) The arrival rate
of inhibition. (b)–(e) Show the PDF at t = 250, 300, 420 and 480 ms respectively (0.25 mV bin
width). Parameters: τi = 10 ms and µIPSP,peak = 0.25 mV.

4. Single-population simulations

In this section we examine the population response with various different parameters and
driving forces. The population density method developed in the previous section will be
compared with Monte Carlo simulations of a large population of individual integrate-and-fire
neurons and with results from mean-field theory. Since the Monte Carlo simulations are of
the original SDE (1), the Monte Carlo simulations are considered to be correct in the sense
that, by the law of large numbers, they converge to the average result as the population size N

approaches infinity.
We emphasize that in our demonstrations the single-neuron parameters were chosen such

that our three-term truncated Taylor series approximation for the integrand in the partial
differential-integral equation (52) is excellent. Thus, the discrepancies between our population
density results and Monte Carlo results stem from the one-dimensional model and not from
the Taylor series approximation.
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Figure 5. The relationship between firing rate and the arrival rate of unitary excitatory synaptic
events. The results from mean-field theory (grey curve), population density method (dark curve) and
Monte Carlo simulations (dashed curve) are compared. In each panel, the synaptic time constant
for decay is given. In all panels, µEPSP,peak = 0.5 mV.

4.1. Steady-state analysis

In figure 5 the performance of our one-dimensional model is examined when a single uncoupled
population of neurons receives Poisson excitatory input at various steady prescribed rates. In
the case of very fast synaptic kinetics, shown in figure 5(a), there is near-perfect agreement
between the one-dimensional model (dark curve) and direct Monte Carlo simulation (dashed
curve). This is not surprising, since the random process is truly one-dimensional in the limit of
instantaneous synaptic kinetics (Nykamp and Tranchina 2000). With slow synaptic kinetics,
the agreement between Monte Carlo and population density results is still very good at high
firing rates, but the model tends to overestimate low firing rates, as shown in figures 5(b)–(d).
The discrepancies between Monte Carlo and our one-dimensional model in the regime of low
firing rates become somewhat more pronounced as the synaptic kinetics are made slower. Note
that the threshold for the onset of firing in the mean field (grey curve) is sharp and much higher
than the location of the foot of the Monte Carlo curve (dashed curve). Thus, the mean-field
method badly underestimates low firing rates. At the threshold of firing onset for the mean field
the slope of the input–output relationship is infinite, unlike that of the Monte Carlo simulation
and population density method.

The model results in figure 5 were computed with the advection–diffusion–dispersion
approximation, but for the EPSP size distribution used in this illustration, the advection–
diffusion results (not shown) are similar. The steady-state advection–diffusion problem can
be solved analytically (Brunel and Hakim 1999), and we provide the solution in appendix C
with the refractory period taken into account. As a further check of our numerical methods,
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Figure 6. The population response to excitation modulated by a 4 Hz sinusoid is shown for one
period of stimulation. Monte Carlo simulation (histogram) is compared to the advection–diffusion–
dispersion (solid curve) and mean-field (dashed curve) results. The synaptic time constant of decay
is given in each panel. The mean arrival rate of excitation is varied to maintain an approximate
peak firing rate of 40–45 Hz. µEPSP,peak = 0.25 mV for all figures.

we compared our numerical solution for the steady-state advection–diffusion problem with the
analytical solution and found them to be indistinguishable (not shown).

4.2. Dynamic stimulus response

In figure 6, we show the response to excitation modulated by a single 4 Hz sinusoid for various
different time constants of decay for the single-exponential unitary post-synaptic current event.
Each panel contains one period of stimulation. There is excellent qualitative agreement
between the advection–diffusion–dispersion approximation (solid curve) and Monte Carlo
simulation (histogram) for synaptic time constants that are both fast and slow compared with
the membrane time constant. However, as the synaptic time constant increases, the quantitative
agreement breaks down toward the end of the period. The strong agreement for very fast
synaptic kinetics in figure 6(a) is consistent with Nykamp and Tranchina (2000). Quantitative

agreement for the case where τ d
e

τm
= 0.25 in figure 6(b) is still quite good. This result is not

peculiar to the particular stimulus in figure 6, as can be seen from figures 9 and 10. Note that
our one-dimensional population density model does a good job of capturing the smeared-out
phase locking (population synchrony) exhibited by the Monte Carlo simulation. The tendency
of integrate-and-fire neurons to phase lock with periodic modulation of synaptic current or
conductance is a well known phenomenon (Knight 1972). In our simulations the synaptic
noise causes dispersion in the firing times.
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Figure 7. The response of a population of neurons to 16 Hz sinusoidally modulated excitatory
input. The results from mean-field theory (dashed curve), population density method (solid curve),
and Monte Carlo (histogram) are compared. (a) Response to excitation modulated by a 16 Hz sine
wave at a mean arrival rate of 2000 Hz. (b) As (a), but with an additional 2000 Hz of constant
excitation balanced by 2000 Hz of constant inhibition. Parameters: τe = 5 ms, τi = 5 ms,
µEPSP,PEAK = 0.25 mV, µIPSP,PEAK = 0.25 mV.
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Figure 8. The response of a population of neurons to a dynamically rich excitatory and inhibitory
input. The results from mean-field theory (dashed curve), population density method (solid curve),
and Monte Carlo (histogram) are compared in the bottom panel. The top panel shows the arrival
rate of excitation (dark curve) and inhibition (grey curve). Parameters: τe = 5 ms, τi = 10 ms,
µEPSP,peak = 0.5 mV, µIPSP,peak = 0.25 mV.

Figure 7 shows another response feature that is captured by the population density method
but not by the mean field method: sensitivity to the addition of perfectly balanced excitation
and inhibition. Figure 7(a) shows the population response to Poisson input in which the
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Figure 9. The response to a step increase in the arrival rate of excitation shown in the top
panel is displayed in the bottom panel. Monte Carlo simulation (histogram) is compared to the
advection–diffusion–dispersion approximation (solid curve) and mean-field (dashed curve) results.
Parameters: τe = 5 ms, µEPSP,peak = 0.5 mV.

rate of excitatory events is modulated by a single sinusoid at 16 Hz (two stimulus periods
are shown). The population density method (solid curve) is compared to both Monte Carlo
simulations (histogram) and mean-field results (dashed curve). Notice that the population
density method again captures the population synchrony exhibited by Monte Carlo simulation.
The mean-field method is not capable of capturing this dynamic property. Figure 7(b) is the
same as 7(a) except that a constant arrival rate of 2000 synaptic events per second is added
to both the excitatory and inhibitory input. Since the parameters of the excitatory synapses
and inhibitory synapses were chosen to be the same, this added input leaves the advection and
dispersion terms unchanged but increases the diffusion term. This increase in the diffusion
term represents an increase in the noise of the input. Comparing the two figures, one sees
that the average firing rate of the population remains about the same; however, the firing rate
function has been smoothed. Since there is an increased level of synaptic activity and much less
dynamical behaviour in the firing rate, the mean-field approximation appears to perform much
better in this setting. However, the remaining dynamical behaviour and periods of low firing are
still captured better overall by the population density method (advection–diffusion–dispersion
approximation).

Figure 8 shows typical performance of our population density method when a population
is simultaneously driven by fast excitatory input (τe = 5 ms) and slower inhibitory input
(τi = 10 ms). In this illustration the excitatory and inhibitory input rates are modulated
independently by sums of sinusoids in order to generate a temporally rich stimulus. The



160 E Haskell et al

1000

1500

2000

ar
riv

al
s 

pe
r 

se
co

nd

0.5 0.6 0.7 0.8 0.9 1
140

145

150

155

160

165

Time (s)

P
op

ul
at

io
n 

fir
in

g 
ra

te
 (

sp
ik

es
/s

)

Figure 10. The PDF method performs well in the regime of small perturbations around a high
mean firing rate regardless of the synaptic time constant. The maximum and minimum arrival
rate differ from the mean arrival rate by 24.83%, as shown in the top panel. Monte Carlo
simulation (histogram) is compared with the advection–diffusion–dispersion approximation (solid
curve) and mean-field (dashed curve) results in the bottom panel. Parameters: τe = 40 ms,
µEPSP,peak = 0.5 mV.

population density method (solid curve) consistently overestimates low firing rates. These

discrepancies result largely from the slow inhibition with τ d
i

τm
= 0.5. Note, however, that the

population density method does a good job of capturing the temporal structure in the Monte
Carlo results (histogram). The mean-field method (dashed curve) misses some periods of
activity completely.

Figure 9 shows the population response to a step increase in the arrival rate of excitation.
Due to a substantial fraction of neurons near threshold before the step onset there is a strong
initial response to the onset of the transient which is captured well by the population density
method. This damped oscillatory approach of the population firing rate to a new equilibrium is
similar to that illustrated in Gerstner (1999) and Nykamp and Tranchina (2000); it has recently
been treated analytically (Knight et al 2000). The mean-field method assumes all neurons are
starting from vreset and receiving the same constant current; hence, it misses this fast transient,
and the smooth temporal structure of the mean-field response simply reflects the dynamics of
the mean excitatory current. Prior to the transient the population is at a steady firing rate of
13 Hz. The advection–diffusion–dispersion approximation overestimates this as 17 Hz and
the mean-field method reports no firing.

Figure 10 shows that our PDF method performs well in the regime of small perturbations
in the firing rate around a high mean level even when the synaptic kinetics are slow. In this
simulation, τe

τm
= 2. Although the population density method does tend to underestimate the
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Figure 11. The excitatory arrival rate displayed in the top panel is delivered to an excitatory
population shown in the middle panel. The bottom panel is the inhibitory population. Here each
population is supplying on average 40 synapses per neuron to the other population. Results from
Monte Carlo (histogram) are compared with the population density method (solid curve) and mean
field (dashed curve). Parameters: τe = 5 ms, τi = 10 ms, µEPSP = 0.25 mV, µIPSP = 0.25 mV,
and mean synaptic delay, ᾱ = 3 ms.

Monte Carlo result more so than the mean-field theory, these differences are very small on the
order of the Monte Carlo firing rate.

5. Interacting populations

We now turn the focus to interacting populations. In this setting a separate PDF, ρk
V
(v, t), is

evolved for each population, k = 1, 2, . . . , N . When populations are coupled together, the
arrival rates of excitatory/inhibitory unitary synaptic events νe/i are determined by the rate of
external input and the firing rates of the various presynaptic populations:

νk
e/i(t) = νk

e/i,o(t) +
∑
j

wjk

∫ ∞

0
αjk(t

′)rj (t − t ′) dt ′, (56)

where νe/i,o is the arrival rate of events originating from external input, wjk is the average
number of synapses a neuron in population k receives from population j , and αjk(t) is the
distribution of synaptic latencies from population j to population k.

The simulations below involve two interacting populations, one excitatory and one
inhibitory, with external input to the excitatory population only. In the Monte Carlo simulations,
each population consists of 1000 neurons, and the results are averaged over five realizations of
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Figure 12. The excitatory arrival rate displayed in the top panel (the same as that in figure 11)
is delivered to an excitatory population shown in the middle panel. The bottom panel is the
inhibitory population. Here each population supplies on average 50 synapses per neuron to
itself and the other population. Results from Monte Carlo (histogram) are compared with the
population density method (solid curve) and mean field (dashed curve). The temporal structure of
the mean-field response is grossly incorrect. Parameters: τm = 20 ms, τe = 5 ms, τi = 22 ms,
µEPSP,peak = 0.25 mV, µIPSP,peak = 0.25 mV, ᾱ = 3 ms.

the random network connectivity. The distribution of synaptic latencies are given by a ninth-
order (n = 9) gamma distribution with a mean of 3 ms. This is similar to the synaptic latency
distribution used by Somers et al (1995) and the same as used by Nykamp and Tranchina
(2000). The same synaptic latency distribution is utilized for each connection.

5.1. Two-population simulations

When an excitatory and an inhibitory population are coupled together, some of the deficiencies
of the one-dimensional model can become more pronounced. However, we demonstrate, with
a few typical examples, that on the whole the population density method does a much better
job of capturing network activity than the mean-field method.

In figure 11, the excitatory population receives an external excitatory input at an average
rate of 2000 arrivals per second modulated by a temporally rich sum of sinusoids. The excitatory
population feeds forward to the inhibitory population with an average coupling of 40 synapses
per neuron. The inhibitory population feeds back into the excitatory population with an average
coupling of 40 synapses per neuron. Figure 11 shows that the population density method (solid
curve) has some timing difficulties, but the times of peak activity differ from those in the Monte
Carlo simulations (histogram) by less than 15 ms. The population density method also misses
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Figure 13. Network oscillations under steady input conditions in coupled populations of excitatory
and inhibitory neurons with slow inhibition. A constant 1500 Hz arrival rate of excitatory events is
applied to an excitatory population shown in the top panel. The bottom panel is the inhibitory
population. Here each population supplies on average 50 synapses per neuron to the other
population. Results from Monte Carlo (histogram) are compared with the population density
method (solid curve) and mean field (dashed curve). This network architecture with the parameters
below creates oscillations in the population response to a steady external input. The population
density and Monte Carlo results match fairly well. The mean-field method gives oscillatory
activity but at the wrong frequency. Parameters: τm = 20 ms, τe = 5 ms, τi = 22 ms,
µEPSP,peak = 0.25 mV, µIPSP,peak = 0.25 mV, ᾱ = 3 ms.

some periods of very low firing. The performance of the mean-field approach in this particular
simulation is comparable to that for uncoupled populations above.

The simulation of a 500 ms stimulus–response period in figure 11 required 2.3 s for the
population density method and 289 s to average five Monte Carlo simulations of the random
network (using a Silicon Graphics computer with a 250 MHz MIPS R10000 processor).

Figure 12 shows a simulation in which each population supplies on average 50 synapses
per neuron to itself and the other population. The excitatory population (middle panel) receives
the same external input as in figure 11. There are sharp peaks of activity, particularly around
275 ms, corresponding to population synchrony. Since the firing rate is computed by population
averaging rather than temporal averaging, the high peak firing rates are from a large number of
neurons firing in a short time period rather than individual neurons firing at an extremely high
rate. The mean-field method performs temporal averaging, and therefore it cannot capture
this population synchrony. In general, the mean-field method performs rather poorly for this
example; the temporal structure of the mean-field firing rate is grossly incorrect for both the
excitatory and inhibitory population. The population density method does a much better job
of capturing the network activity.



164 E Haskell et al

For some choices of network architecture and synaptic kinetics, network oscillations can
be achieved by applying a constant excitation. An example of this is shown in figure 13. Here
an excitatory population receiving constant external input feeds forward onto an inhibitory
population that then feeds back to the excitatory population. There are an average of 50
synapses made per neuron. In the excitatory population, the period between oscillations is of
the order of the firing duration of the inhibitory population. Once the inhibition shuts down
the excitatory population, the inhibitory population no longer receives excitation. This in turn
shuts down the inhibitory population, allowing the excitatory population to resume firing and
the cycle to start over again. There is a fairly good match between population density and
Monte Carlo results in this example. The mean-field method does give network oscillations
but at a frequency that is far off.

6. Discussion and conclusion

Until recently, probability density or population density methods have been used primarily
as a tool to study the statistics of random spike trains (Tuckwell 1988, Wilbur and Rinzel
1982, 1983). Beginning about 10 years ago, population methods have been used to obtain
results on activity in networks of neurons (Abbott and van Vreeswijk 1993, Brunel and Hakim
1999, Strogatz and Mirollo 1991, Kuramoto 1991, Barna, Gröbler and Érdi 1998, Treves 1993,
Chawanya et al 1993, Adorján et al 1999, Knight et al 2000, Nykamp and Tranchina 2000,
Pham et al 1998, Gerstner and van Hemmen 1994, Gerstner 1995, 1999).

Although population density methods seem promising and may provide time-saving
alternatives to conventional direct simulations, these methods do present their own difficulties.
One stems from the fact that the incorporation of realistic synaptic kinetics into the underlying
single-neuron model gives a high-dimensional population density function. A post-synaptic
conductance whose unitary event time course is a simple difference-of-exponentials (or alpha
function), for example, adds two dimensions to the PDF. When the dimension of the population
density function is greater than one or two at the most, it becomes more time consuming to
compute network activity by the population density method than by the conventional direct
method.

It has been shown previously that when the excitatory synapse is modelled as instantaneous
and the inhibitory synapse is non-instantaneous, a mean-field approximation on the inhibitory
conductance random variable gives good results in the presence of sufficient excitation. This
mean-field approximation on the inhibitory conductance retains a one-dimensional population
density function. This method would not work, however, with an intrinsically oscillatory
underlying neuron which is driven by inhibition only. Furthermore, in cases where there
is both excitatory and inhibitory input, excitatory conductances gated by AMPA or kainate
receptors are often not sufficiently fast on the time scale of the membrane time constant to
be well approximated as instantaneous. Excitatory conductances gated by the NMDA-type of
ionotropic receptors or by metabotropic receptors are particularly slow. These facts motivated
our attempt to develop computationally efficient population density methods that can handle
arbitrary synaptic kinetics. Our method is based on the simple idea that the firing rate of a
population of integrate-and-fire neurons is given by the total flux of probability across the
threshold voltage. Therefore, the firing rate is determined by the evolution equation for the
marginal density function, ρV (v, t). We showed that an exact evolution equation for ρV (v, t)

can be written for a simple, related, but artificial, stochastic process, in which synaptic input
is modelled as current injection and both voltage reset and the lower bound on voltage (at
the reversal potential for inhibitory post-synaptic current for a conductance-driven neuron)
are eliminated. The derivation of the one-dimensional evolution equation for this stochastic
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process relies on the fact that, in this process, the membrane potential is a linear functional
of the synaptic currents. This is no longer the case when voltage is reset after neurons cross
threshold.

Our one-dimensional model for the integrate-and-fire neuron was obtained by using,
without rigorous justification, the evolution equation for the simpler stochastic process and
by adding appropriate boundary conditions. The resulting evolution equation is a partial
differential-integral equation, and it is exactly correct in the limit of instantaneous synaptic
kinetics; in the instantaneous synapse case, the stochastic process is truly a one-dimensional
Markov process. Consequently, one would expect our model to give good results for fast (but
non-instantaneous) synaptic kinetics, and we showed that this is indeed the case. Unfortunately,
performance degenerates as the synaptic kinetics are made slower and slower.

The discrepancies between our one-dimensional model and Monte Carlo simulations
are evident both for steady and dynamic stimuli; the one-dimensional model overestimates
low firing rates. The one-dimensional model does a very good job of capturing moderate
modulations in firing rate around some moderate-to-high mean firing rate regardless of synaptic
time constants. Under dynamic stimulus conditions, the one-dimensional model generally does
a good job of matching the times of the peaks and troughs in activity, but sometimes misses
substantially the magnitudes at these points for large synaptic time constants. Deficiencies of
the one-dimensional model can be more pronounced when populations are coupled together
(figure 11).

The mean-field method, on the other hand, underestimates low firing rates in the steady
state, and has a sharp threshold synaptic current for the onset of firing. The mean-field method
cannot capture periods of high population synchrony. Mean-field results can be grossly
incorrect when an excitatory and an inhibitory population are coupled together (figures 12
and 13).

An alternative to the one-dimensional model as a method for reducing the dimension of the
probability density problem to be solved is a moment-expansion method, which gives systems
of coupled partial differential equations and auxiliary ODEs for each population. The method
was described briefly by Nykamp and Tranchina (2001) in connection with slow inhibition.
In order to describe the method, we focus on the case of excitatory synaptic current injection
only, in which the unitary synaptic event waveform is a single exponential. In this case, the
PDF is two-dimensional with arguments v (voltage), x (synaptic current divided by membrane
capacitance) and t (time). From the conservation equation for this system, a series of partial
differential equations can be obtained by multiplying through by xk and integrating over x.
Let us define f

(k)
V (v, t) = µXk |V (v, t)ρ

V
(v, t), where µXk |V (v, t) is the kth moment of X

given V , and fV (v, t) is the marginal PDF for V . The series of partial differential equations
relate each f

(k)
V to all lower terms (i.e. f

(j)

V for j = 1, 2, . . . , k − 1) and to the next-higher
term, f

(k+1)
V . The firing rate for this system is determined by f

(0)
V and f

(1)
V . One method to

obtain an approximate solution for the various f
(k)
V up to some level, say k = n, is to make

the approximation that the centred n + 1 moment of X is independent of V . An ODE for
any unconditioned moment of X is easily obtained from the stochastic ODE describing the
evolution of X. It is possible that stopping at the level k = 1 will give good approximate results.
In this case, the approximation that the variance of X is independent of V would be made, and
only two coupled partial differential equations would result. Two coupled one-dimensional
partial differential equations could be solved in far less time than one two-dimensional partial-
differential-integral equation.

We view our one-dimensional model as a first attempt at dealing with the dimension
problem caused by the introduction of realistic synaptic kinetics in the population density
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framework. Our methods give results that are more accurate than those of the mean-field
method, but there is certainly room for improvement. The method appears to be good enough
to use in the exploration of parameter space in testing neuronal network models, but final
testing of a promising model should still probably be done with direct simulation.

Appendix A. Parameters

The following parameters were used for all simulations: Ei = −70 mV, Er = vreset = −65 mV,
vth = −55 mV, Ee = 0 mV, τm = 20 ms and τref = 3 ms.

The sizes of the unitary synaptic events are given according to a gamma distribution with
density

fAe/i(x) = exp(−x/ae/i)

ae/i(ne/i − 1)!

(
x

ae/i

)ne/i−1

, (57)

where fAe/i is the PDF for Ae/i. The average values of Ae/i were chosen to provide a prescribed
average peak membrane potential change to a unitary synaptic event. The coefficient of
variation was chosen to be 0.5. The mean and coefficient of variation determine the parameters
ae/i and ne/i.

For simulations involving interacting populations, the distribution of synaptic latencies
were given by a ninth-order (n = 9) gamma distribution with a mean of 3 ms (a = 1

3 ms). The
same synaptic latency distribution was used for each connection.

Appendix B. Boundary conditions

The probability that the membrane potential is in the interval (v−5v, v) can be approximated
by

Pr{V (t) ∈ (v − 5v, v)} = ρ
V
(ξ, t)5v + O((5v)2), for v − 5v < ξ < v. (58)

Let us consider the time evolution of this area at v = vth when there are no externally applied
forces. The only force acting on the neuron is leakage, which is zero at threshold since no
neuron may contribute to the flux from above vth:

∂

∂t
ρ

V
(ξ, t)5v = −(flux in − flux out) (59)

= Jl(vth − 5v, t) − Jl(vth, t) (60)

= − 1

τm
(vth − 5v − Er) ρV

(vth − 5v, t) − 0. (61)

Now we expand ρ
V
(vth − 5v, t) in a Taylor series—the v-derivative of ρ

V
(v, t) evaluated at

vth are to be interpreted as one-sided derivatives taken from below vth:

∂

∂t
ρ

V
(ξ, t) = − 1

τm
(vth − 5v − Er)

1

5v

[
ρ

V
(vth, t) − ∂ρ

V

∂v

∣∣∣
v=vth

5v + O((5v)2)

]
. (62)

Lastly, we ask what happens as 5v approaches zero:

∂

∂t
ρ

V
(vth, t) = − 1

τm
(vth − Er)

[
lim

5v→0

ρ
V
(vth, t)

5v
− ∂ρ

V

∂v

∣∣∣
v=vth

]
. (63)

In order for the above expression to make sense, it must be that the density is identically zero
at threshold.
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Now, given that ρ
V
(vth, t) = 0, we seek to find a relationship between the first and second

v-derivatives of ρ
V
(v, t) at the threshold boundary vth. Since there is no inhibitory flux at the

vth we consider the case of only an excitatory flux and begin with the evolution equation (20):
∂ρ

V

∂t
(vth, t) = − ∂

∂v
J (v, t)

∣∣∣
vth

+ δ(vth − vreset)JU (τref , t) (64)

= − ∂

∂v

[
− 1

τm
(v − Er)ρV

(v, t) + Je(v, t)

]
v=vth

(65)

= 1

τm
ρ

V
(vth, t) +

1

τm
(vth − Er)

∂ρ
V

∂v

∣∣∣
v=vth

+
∂Je

∂v

∣∣∣
v=vth

. (66)

We replace Je(v, t) with the first three terms of the Taylor series approximation (54):

∂

∂v
Je

∣∣∣
v=vth

=
[
(h ∗ ν) (t)µA

∂ρ
V

∂v
− (qh ∗ ν) (t)µA2

∂2ρ
V

∂v2

]
v=vth

. (67)

Now, since the density is constant at vth, we have that
∂ρ

V

∂t
(vth, t) = 0, which yields the

relationship at vth:

∂2ρ
V

∂v2

∣∣∣
v=vth

=
µA (h ∗ ν) (t) − 1

τm
(vth − Er)

µA2 (qh ∗ ν) (t)

∂ρ
V

∂v

∣∣∣
v=vth

. (68)

Appendix C. Analytic solution for diffusion approximation in steady state

The steady-state solution for the diffusion approximation has been provided by Brunel and
Hakim (1999). We modify their solution below to take into account the refractory period,
τref . For the sake of simplified notation, we consider the case of excitatory input only. The
addition of inhibitory input would simply change the advection and diffusion coefficients. The
evolution equation for ρV (v, t) in the diffusion approximation is
∂ρ

V

∂t
= − ∂

∂v

{[
− 1

τm
(v − Er) + c1a(t)

]
ρ

V
(v, t) + 2c2D(t)

∂ρ
V

∂v

}
+ δ(v − Er)r(t − τref).

(69)

In the steady state we have

0 = − ∂

∂v

{[
− 1

τm
(v − Er) + c1a

]
ρ

V
(v) + 2c2D

∂ρ
V

∂v

}
+ δ(v − Er)r. (70)

Equation (70) implies that the total flux (the term in curly brackets) is constant for Er � v � vth

and also for Ei � v � Er, with a jump of r at v = Er. The flux at vth is the firing rate, r .
Therefore, the constant flux to the right of Er is r , and to the left of Er is zero. The solutions
for the two domains, Er � v � vth and Ei � v � Er, can be combined into a single expression
(Brunel and Hakim 1999):

ρ
V
(v) = r

2c2D
exp

[
− 1

2τm(2c2D)
(v − Er − c1aτm)2

]

×
∫ vth

v

H(v′ − Er) exp

[
1

2τm(2c2D)

(
v′ − Er − c1aτm

)2]
dv′, (71)

where H(x) is the Heaviside step function.
Equation (71) contains the unknown firing rate, r . It is found by using the fact that the

fraction of unrefractory neurons plus the fraction of refractory neurons is equal to 1. The
fraction in the refractory state is given by r τref . Thus, the firing rate is given by

r = −2c2D

I − 2c2Dτref
, (72)
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where

I =
∫ vth

Er

dv exp

[
− 1

2τm(2c2D)
(v − Er − c1aτm)2

]

×
∫ vth

v

dv′H(v′ − Er) exp

[
1

2τm(2c2D)

(
v′ − Er − c1aτm

)2
]

dv′. (73)

Appendix D. Demonstration of instantaneous limit

In order to simplify notation we consider the case of excitatory input only. In the case of
instantaneous synaptic kinetics, V (t) obeys

dV

dt
= − 1

τm
(V − Er) +

∑
k

Akδ(t − Tk), (74)

where Ak and Tk are as defined in section 2.1.
The derivation of the excitatory flux term is analogous to that for the conductance driven

synapse in Nykamp and Tranchina (2000). When an event arrives, V jumps by a random
amount Ae. Thus, an excitatory flux across voltage v is contributed by neurons in a small
neighbourhood (dv′) around v′ < v whenever Ae > v − v′, which occurs with probability
F̃Ae(v − v′). Given that a synaptic event has occurred, the probability that a neuron in this
particular neighbourhood will receive synaptic input is ρ(v′, t) dv′. The probability per unit
time of an event is νe(t). Therefore, the excitatory flux Je(v, t) is given by

Je(v, t) = νe(t)

∫ v

−∞
F̃Ae(v − v′)ρ(v′, t) dv′ (75)

= νe(t)

∫ ∞

0
F̃Ae(x)ρ(v − x, t) dx. (76)

In the non-instantaneous kinetics case, we have

Je(v, t) =
∫ t

−∞
dt ′νe(t

′)he(t − t ′)
∫ ∞

0
dx xfAe(x)ρ(v − xqe(t − t ′)). (77)

Expanding ρ(v − xqe(t − t ′)) in a Taylor series about v gives

Je(v, t) =
∫ t

−∞
dt ′νe(t

′)
∞∑
k=0

∂kρ

∂vk
he(t − t ′)qk

e (t − t ′)
∫ ∞

0
dx xk+1fAe(x)

(−1)k

k!
. (78)

We show below that for he(t) given by a sum of exponentials, in the limit of instantaneous
synaptic kinetics, where he(t) → δ(t), he(t)q

k
e (t) → 1

k+1δ(t). If we use this fact in (78),
Je(v, t) in this limit becomes

Je(v, t) = νe(t)

∞∑
k=0

∂kρ

∂vk

∫ ∞

0
dx

xk+1

(k + 1)!
(−1)kfAe(x). (79)

Integrating by parts yields

Je(v, t) = νe(t)

∫ ∞

0
dx F̃Ae(x)

∞∑
k=0

∂kρ

∂vk

(−x)k

k!
(80)

= νe(t)

∫ ∞

0
dx F̃Ae(x)ρ(v − x, t) (81)

which is the same as the flux for the instantaneous synapse case given in equation (76).
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We show that he(t)q
k
e (t) → 1

k+1δ(t) in the limit of instantaneous synaptic kinetics, for
any he(t) that is a sum of exponentials

he(t) =
∑
k

akαk exp(−αkt)H(t), (82)

where
∑

k ak = 1, by virtue of the fact that he(t) has unit integral, and Re(αk) is positive.
In the instantaneous limit Re(αk) → ∞ for all k and he(t) → δ(t). By definition,
qe(t) = he(t) ∗ (H(t) exp(− t

τm
)), which approaches H(t) exp(− t

τm
) as he(t) approaches δ(t).

Since the decay of he(t) becomes more rapid as the synaptic kinetics become faster, so must
the product function he(t)q

k
e (t). Thus, he(t)q

k
e (t) must approach zkδ(t), but the constant zk is

not obvious. The constant zk is given by

zk = lim
he(t)→δ(t)

∫ ∞

−∞
he(t)q

k
e (t) dt. (83)

Evaluation of the integral (83) is greatly simplified by using the fact that
dqe

dt
= − 1

τ
qe + he. (84)

Thus,

he(t)q
k
e (t) = qk

e (t)
dqe

dt
+

1

τm
qk+1

e (85)

= 1

k + 1

dqk+1
e

dt
+

1

τm
qk+1

e . (86)

Substituting this expression for he(t)q
k
e (t) into (83) gives∫ ∞

−∞
he(t)q

k
e (t) dt = 1

k + 1

∫ ∞

−∞

dqk+1
e

dt
dt +

1

τm

∫ ∞

−∞
qk+1

e (t) dt (87)

= 1

τm

∫ ∞

−∞
qk+1

e (t) dt. (88)

Since qe(t) is a simple convolution of exponentials it can be easily found:

qe(t) =
∑
k

ak

αkτm

αkτm − 1

(
exp

(
− t

τm

)
− exp(−αkt)

)
. (89)

For large Re(αk), ignoring terms O(‖αk‖−1), qe(t) can be approximated by

qe(t) ≈
∑
k

ak

(
exp

(
− t

τm

)
− exp(−αkt)

)
(90)

= exp

(
− t

τm

)
−
∑
k

ak exp(−αkt), (91)

where we have used that
∑

k ak = 1. When qk+1
e (t) is expanded out, it is clear from

approximation (89) that, as Re(αk) → ∞, only the first term, exp(− t
τm

), contributes to the
integral (88), since all other terms decay instantaneously and have zero integral in the limit.
Therefore,

zk = lim
he(t)→δ(t)

∫ ∞

−∞
he(t)q

k
e (t) dt (92)

= lim
he(t)→δ(t)

1

τm

∫ ∞

−∞
qk+1

e (t) dt (93)

= 1

τm

∫ ∞

−∞
exp

(
−(k + 1)

t

τm

)
dt (94)

= 1

k + 1
. (95)
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Appendix E. Moment matching technique

We now show how the coefficients in the evolution equation for ρ
V
(v, t) can be found by a

moment matching technique. The SDE (1) describes the evolution of a neuron’s membrane
potential, V (t). As such, it completely specifies the evolution of the moments of V (t). The
evolution equations for the mean µV (t) and variance σ 2

V (t) of the membrane potential are
derived in sections E.1.2 and E.1.3. The evolution equation for the third moment, K3

V (t), is
calculated in a similar fashion. We state the result for K3

V (t) and omit the details.
Suppose one assumes that the evolution equation for ρ

V
(v, t) can be approximated by

∂ρ
V

∂t
= − ∂

∂v

{
− 1

τm
(v − Er)ρV

(v, t) + α(t)ρ
V
(v, t) + β(t)

∂ρ
V

∂v
(v, t) + γ (t)

∂2ρ
V

∂v2
(v, t)

}
. (96)

In the section E.1.1 we show that in order to find the mean of the membrane potential, we need
to know α(t). We also show that, once the mean is known, β(t) is required for finding the
variance. In a similar manner, γ (t) is needed in order to find the third moment, K3

V (t), of the
membrane potential. However, the coefficients α(t), β(t), γ (t) are not known.

E.1. Derivation of evolution equations

In this section, we show the derivation of the evolution equations for the moments of the
membrane potential from both the SDE (1) and the PDE (96). Given these evolution equations,
we may then compare terms to solve for the coefficients of the PDE (96).

E.1.1. Moments from the PDE (96). To compute the evolution of the mean and variance, we
make use of the reduced form of the conservation equation (20)

∂ρ
V

∂t
= − ∂JV

∂v
, where JV (v, t)

is given by equation (96):
dµV

dt
= d

dt
E(V ) (97)

=
∫

v
∂ρ

V

∂t
dv (98)

=
∫

−v
∂JV

∂t
dv (99)

=
∫

vJV dv (100)

=
∫

v

(
− 1

τm
(v − Er)ρV

+ α(t)ρ
V

+ β(t)
∂ρ

V

∂v
+ γ (t)

∂2ρ
V

∂v2

)
dv (101)

= − 1

τm
(µV − Er) + α(t). (102)

Similarly, we can find an evolution equations for the variance;

dσ 2
V

dt
= d

dt
E((V − µV )2) (103)

= d

dt
E[V 2] − 2µV (t)

dµV

dt
. (104)

The computation of the expected value of V 2 follows the same methodology as that for the
expected value of V (t). Then, dµV

dt is replaced with the previously found expression to achieve

dσ 2
V

dt
= − 2

τm
σ 2
V − 2β(t). (105)
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E.1.2. The evolution of the mean membrane potential. We derive an evolution equation
for the mean membrane potential by finding the expected value of the membrane potential
from the SDE (1). By conditioning on the number of event arrivals in (108), we can use that
Ak

e/i, T
k

e/i are independent identically distributed random variables in (109):

dµV (t)

dt
= E

[
dV

dt

]
(106)

= − 1

τm
(µV − Er) + E

[ N∑
k=1

Akh(t − T k)

]
(107)

= − 1

τm
(µV − Er) + E

[
E

[ n∑
k=1

Akh(t − T k)

∣∣∣N = n

]]
(108)

= − 1

τm
(µV − Er) + E

[
n

∫∫
a h(t − t ′)

ν(t ′)∫
ν(s) ds

fA(a) da dt ′
]

(109)

= − 1

τm
(µV − Er) + µA

∫
h(t − t ′)ν(t ′) dt ′ (110)

= − 1

τm
(µV − Er) + µA

(
h ∗ ν

)
(t). (111)

E.1.3. The evolution of the variance of the membrane potential. Using the analytic solution
for the SDE (1),

V (t) = Er +
1

τm
e− t

τm ∗ I (t), (112)

we derive an evolution equation for the variance of the membrane potential in a similar manner
as in the previous section:

dσ 2
V (t)

dt
= E

[
d

dt

(
V 2 − µ2

V

)]
(113)

= E

[
2V

dV

dt
− 2µV

dµV

dt

)]
(114)

= − 2

τm
(µV 2 − ErµV ) + 2E

[
V (t)

N∑
k=1

Akh(t − T k)

]

−
(

− 2

τm
(µ2

V − ErµV ) + 2µV µA(h ∗ ν)(t)

)
(115)

= − 2

τm
σ 2
V + 2µA2(qh ∗ ν). (116)

By comparing the evolution equations for the moments found from the SDE (10) and
PDE (96) we find these coefficients:

α(t) =
∫ t

−∞
he(t − t ′)νe(t

′) dt ′ (117)

β(t) =
∫ t

−∞
qe(t − t ′)he(t − t ′)νe(t

′) dt ′ (118)

γ (t) =
∫ t

−∞
q2
e (t − t ′)he(t − t ′)νe(t

′) dt ′. (119)

These coefficients are the same as those in (45).
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Appendix F. First-order kinetics example

Throughout this paper, we have used first-order kinetics as a specific example and for all
simulations. For first-order kinetics, the unitary synaptic current event is described by a single
exponential as in equation (8):

he/i(t) = 1

τ
e/i
d

e
− t

τ
e/i
d H(t). (120)

In this appendix we show, using these kinetics, how to find µAe/i and then discuss some practical
issues for implementing these kinetics efficiently.

From the original SDE (1), we can find the time it takes for the neuron to reach its peak
response to an unitary event. That is, if an event arrives at time T , for what value 5tpeak is
5V = |V (T + 5tpeak) − V (T )| maximal? For these kinetics, the time is found to be

5te
peak = τ e

d τm

τm − τ e
d

ln

(
τm

τ e
d

)
� 0. (121)

If we specify a mean peak voltage change, 5ve
peak, then we can evaluate the unitary event

response of (1) at 5tpeak to solve for µAe :

µAe =
5ve

peak

(
τ e

d −τm

τm

)
(

τ e
d

τm

) τm
τm−τe

d −
(

τ e
d

τm

) τe
d

τm−τe
d

. (122)

The solution to the SDE (1) is

V (t) = Er +
Ne∑
k=1

Ak
eqe(t − T k

e ) −
Ni∑
k=1

Ak
eqi(t − T k

i ) (123)

where

q(t) = h(t) ∗ e− t
τm (124)

q(t) = τm

τm − τ e
d

(
e− t

τm − e
− t

τe
d

)
(125)

= 1

1 − τ e
d

τm

e
− t

τe
d

(
e
−t ( 1

τm
− 1

τe
d
) − 1

)
, (126)

and ∗ denotes the convolution operator.
In order to evolve the coefficients of advection, diffusion and dispersion, we need to know

qk(t) =
(

1

1 − τ e
d

τm

)k

e
−k t

τe
d

( k∑
j=0

(
k

j

)
(−1)k−je

−j t ( 1
τm

− 1
τe
d
)
)

(127)

qk(t)h(t) = 1

τ e
d

(
1

1 − τ e
d

τm

)k

e
−(k+1) t

τe
d

( k∑
j=0

(
k

j

)
(−1)k−je

−j t ( 1
τm

− 1
τe
d
)
)
. (128)

Since the waveform he(t) is given by an exponential, the convolutions expressed in
equation (45) are convolutions of exponentials with νe(t). Thus, these convolutions can be
written as ODEs which are much more numerically efficient to implement than convolution
integrals:

da

dt
= − 1

τs
a +

µA

τs
ν(t) (129)
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D(t) = −µA2

τs

τm

τm − τs
(D1(t) − D2(t)) (130)

dD1

dt
= −

(
1

τm
+

1

τs

)
D1(t) + ν(t) (131)

dD2

dt
= − 2

τs
D2(t) + ν(t) (132)

F(t) = 1

2

µA3

τs

τ 2
m

(τm − τs)2

(
F1(t) + F2(t) − 2F3(t)

)
(133)

dF1

dt
= − 3

τs
F1(t) + ν(t) (134)

dF2

dt
= −

(
2

τm
+

1

τs

)
F2(t) + ν(t) (135)

dF3

dt
= −

(
1

τm
+

2

τs

)
F3(t) + ν(t). (136)
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