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Abstract

We give a new proof of the stable manifold theorem for hyperbolic
fixed points of smooth maps. This proof shows that the local stable
and unstable manifolds are projections of a relation obtained as a limit
of the graphs of the iterates of the map. The same proof generalizes
to the setting of stable and unstable manifolds for smooth relations.

1 Introduction

The stable manifold theorem states that for a smooth map, near a hyperbolic
fixed point, the stable manifold, points whose forward orbit converges to the
fixed point, and the unstable manifold, points with backward orbit converg-
ing to the fixed point, are both smooth manifolds. This paper presents a
new proof of the stable manifold theorem. The theorem is proved in the con-
text of hyperbolic fixed points of “smooth relations” [1], [4], a generalization
which includes as special cases hyperbolic fixed points of both invertible [3],
[5] and noninvertible [6] maps. However, this is not merely a generalization
of the standard theorem. The new approach restores to the noninvertible
case the symmetry between the stable and unstable manifolds as is seen in
the diffeomorphism case. In addition, it provides a new geometric way of
looking at the local stable and unstable manifolds of a map; namely, they
are both projections of an object one can think of as the “infinite iterate”
of the graph of the map.
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The key to this new proof is that rather than looking at stable and
unstable manifolds as subsets of the state space, we view them as projections
of a smooth manifold in higher dimensions arising from the graph of the
original map. More precisely, near a hyperbolic fixed point, the graph of
a map and the graphs of its iterates can be expressed in an appropriate
coordinate system as graphs of smooth contractions. The limit of these
contractions exists and is smooth. The graph of this limit projects to the
stable and unstable manifolds.

The derivative of a smooth map on R" at a hyperbolic fixed point has
no eigenvalues on the unit circle. Thus locally, in coordinates given by the
stable and unstable directions X and Y, a map can be expressed as follows:

y' By + ¢2(x,y)

where z and y are vectors in X and Y , A and B matrices with |A] <
1,|B 'l <1, and ¢y and g, are Lipschitz with small Lipschitz constant.

By the Implicit Function Theorem, we can locally change to a skewed
coordinate system such that in these new coordinates, we have a local con-
traction. Namely, we can write:

(Il) = ( Az + g1 (2, y') ) (2)
y By 4 ga(z.y')

g1 and gy are again Lipschitz with small Lipschitz constant.

The proof presented here capitalizes on the fact that the map and all
its iterates are local contractions when written in this skewed coordinate
system. Before presenting the proof, we illustrate the ideas with some simple
examples.

2 Some Simple Examples

1. Consider the graph of the following linear diffeomorphism on R? with
hyperbolic fixed point (0, 0):

z’ a 0 T . |
(y’)_<0 b) (y) forO<e<i<? i

Since the z-axis and the y-axis are respectively the one-dimensional sta-
ble and unstable directions, we choose them to be the directions X and Y
respectively in the skewed coordinates. Call the new function resulting from
writing f in skewed coordinates ¢,. It is written as follows:



(=6 9()

The k' iterate of the original map is

()= ) G)

Writing the k'" iterate in skewed coordinates, gives the following function
¢r. Note that ¢y, is found by looking at f* and not by iterating ¢;.

(=05 D) (©)

Consider the limit of the ¢,; it exists and is equal to the map which is
identically zero; explicitly, limg_.., ¢ is the following map in skewed coor-

()= o) (7) "

Notice that this limit map in the skewed coordinate system does not

dinates on R?:

correspond to a function in the original coordinates. However, we can gain
information about the stable and unstable manifolds from its graph. Namely,
the projection of the graph to the zy- plane is the z-axis, the stable mani-
fold. The projection of the graph to the z'y’- plane is y’-axis, the unstable
manifold.

2. The trick in Example 1 still works if the linear map is noninvertible;
i.e. if @ = 0. The map becomes:

(x:)=(0)7 forl < b (8)
Y by

which can still be expressed in the same skewed coordinates as before:

(f/) - (;j) (9)

The limit of the ¢y, the k" iterate written in skewed coordinates, is the
same as before. Indeed, the stable and unstable manifolds are once again
the x-axis and y-axis respectively.

3. If we allow the stretching term b in Example 1 to increase without
bound, the graph of the map converges to {(u,0,au,v) : (u,v) € R*}. This
is no longer the graph of a function but is only a relation;



Definition 1 (Relation) A relation on a space Z is a subset of Z x Z.
Viewing this in terms of iteration, an iterate of z under relation F' is a point
z' such that (z,2') € F. Notice that iterates of a point are not necessarily
unique; nor do iterates necessarily exist.

The relation in this example is a two-dimensional plane which is a subset
of R* with second coordinate always equal to 0. A point (z,y) € R? has no
iterates unless y = 0. A point (z,0) has as iterates every point of the form
(az,y'). ¥ € R. Thus the origin is still a “fixed” point under iteration. Since
points on the z-axis have k' iterates of the form (a*z,0), which converge
to the origin, the z-axis is in (and in fact equal to) the stable manifold.
Likewise, every point on the y-axis is an iterate of the origin. Thus the
y-axis is contained in (and in fact equal to) the unstable manifold.

We can also use the technique in Examples 1 and 2 to see this; although
there is no longer a map, limit of b increasing without bound corresponds
to b = oo; i.e. + = 0. Thus although our example is no longer a map, it is

b
the graph of a function in skewed coordinates:

()-(5)

In this case, as in Examples 1 and 2, the limit of the iterates as expressed
in skewed coordinates exists and is equal to the zero function. Again the
projections of the graph of this zero function are the stable and unstable
manifolds.

4. Here is a contrived quadratic example to illustrate the same idea in
a nonlinear case. Note that the map f on R? has a hyperbolic fixed point

(0,0):

T ax
<y,) = <b(y+ mQ)) , for0<a<1<b (11)

Since the axes are again the stable and unstable directions, we choose the
axes for the skewed coordinate directions as before. The map represented
in the skewed coordinate system gives the following function ¢ :

()= (") a2

Figure 1 shows the graph of ¢; with domain [—.3,.3] x [—.3,.3]. By the
fact that ¢, is a contraction, this figure is the same as the graph of f with
both domain and range restricted to [—.3,.3] x [-.3,.3]. Since the graph of



Figure 1: Projections of the graph of ¢; resulting from the map in Example
4: Domain and range are [—.3,.3] x [-.3,.3], a = .7, 0 = 1.43 ¢ = 1. Top
left is the zy- plane, top right the z'y’- plane, bottom left the zy’- plane,
bottom right the z'y- plane.



a map from R? to R? is in R*, the figure consists of projections of the graph

to coordinate planes. The projections have the following relationship to the

maps f and ¢;: f maps the region in the zy- plane to the region in the x'y’-

plane. ¢ maps the region in the zy’- plane to the region in the z'y- plane.
The k' iterate f* is:

k 2
Lr\ _ a~r -, = ;
<yk) = (bk:(y_}_c(%)xZ)) ) where p b (13)

Represented in skewed coordinates, it gives the following function ¢,:
k 2
T a’x a
= Lk , where p = — 14
) R T R

Figure 2 shows the graph of ¢,y for the same domain and constants as
in Figure 1. Again, f?° maps the region in the zy- plane to the region in

the z'y'- plane; ¢ maps the region in the zy'- plane to the region in the

z'y- plane.
The limit limj_ . ¢ exists. It is given by:

(z/) N (—_i;zx?) (15)

As in the previous examples, the projections of the limit map to the xy-
and z'y’- planes are respectively the local stable and unstable manifolds for

f

Since the convergence to the limit function is exponentially fast, the
graph of ¢,y in Figure 2 is visually indistinguishable from the graph of
limy_.o ¢p. This is why three of the projections appear to be curves. How-
ever, the graphs of both ¢ and the limit function are two-dimensional
surfaces in R*. To emphasize this point. Figure 3 shows projections of the
same surface after it has been rotated in R*.[2]

We now show that the result from the above examples generalizes to
a certain class of relations. In Section 3 we give basic definitions for the
dynamics of relations and state the stable manifold theorem in this general
setting. In Section 4, we outline the proof of the stable manifold theorem.

|4

Finally, in Section 5 we give the full details of the proof outlined in the
previous section.



Figure 2: Same projections as figure 1, this time of ¢4y, the skewed function
of the twentieth iterate of f. This is very close to the limit case. Although
three of the projections look like curves, they are actually projections of a
surface. See Figure 3.



Figure 3: The graph of ¢9q shown in Figure 2 after it has been rotated slightly
in R*. Same projections as before. This figure illustrates that although three
of the four projections in Figure 2 appear to be curves, the graph is actually
a surface in R*.



3 Basic Definitions

In the previous section, relations on Z were defined as subsets of Z x Z and
were viewed in terms of iteration. Here are some definitions in this context.
. . . I

We denote z having an iterate z' under relation f by z + 2'.

Definition 2 (Fixed Point) Given a relation f on set Z, z € Z is a fized
point of [ if (z.2) € f.

Definition 3 (Composition for Relations) Given relations g and h on
set Z, h o g s the relation given by

{(2,2"):3 2 €Z(z,2') € g and (,2") € h} (16)

Notation: If I is an interval of integers and z, € Z for all k € [ is a
sequence of points in Z, then we denote

(Zi72i+1,...,ZJ‘), if I = [Z,j]
{Zetper = 8 (ozjo1,25), if T = (=00, ] (17)
(Zis Zig1s -e)y if T =[2,00)

Definition 4 (Orbits for Relations) Given relation f on space Z, an or-
bit through z is a sequence {z}, o, such that z = z; for some i € I, and
(zkrz611) € f whenever k,k+1 € I. If I = [i,00) then {z,} is called an
infinite forward orbit. If I = (—oc, 1] then {2z} is called an infinite backward
orbit.

Definition 5 (Stable and Unstable Manifolds) For a relation f on met-
ric space Z with fized point z,, the stable and unstable manifolds W*(z,) and
WY (z,) are defined by:

W*(z,) = {z € Z : there exists an infinite forward orbit {z;} through z
such that z;, — z, as k — oo}.

W#(z,) = {2z € Z : there exists an infinite backward orbit {z,} through z
such that z, — z, as k — —oo}.

Definition 6 (C" Relations) If f is a relation on a smooth manifold Z,
then f is C” when it 1s a C" embedded submanifold of Z x Z.

Definition 7 (Linear Relations) If f is a relation in a vector space Z,
then f is a linear relation if ot is a linear subspace of Z X Z.



Definition 8 (Hyperbolic Linear Relations) If f is an n-dimensional
linear relation on an n-dimensional vector space Z, then f is hyperbolic
when there 1s a splitting Z = E° x E* such that under this splitting, f 1s of
the form

€T
/

by , ;
cr € B® B 1
S| rme Ly € (18)
!

Y

where a and b are matrices, and |al, |b] < 1.

Note that the graph of any hyperbolic linear map is a hyperbolic linear
relation. See Example 1 for the case of a saddle in R?.

Definition 9 (C” Hyperbolic Relations) A C” relation f on a smooth
manifold Z has a hyperbolic fized point z, when T(., . )f, its tangent plane
at (2o, 20), 18 @ hyperbolic linear relation.

Note that the graph of a map with hyperbolic fixed point z, is a relation
which has hyperbolic fixed point z,.
We can now state the main theorem of the paper.

Theorem 1 (Stable Manifold Theorem for Relations) If f is a« C”
relation on R™, and f has hyperbolic fized point z,, then near z,, W*(z,)
and W*(z,) are graphs of C" functions.

4 Outline of the Proof of the Main Theorem

The following definitions and lemmas outline the proof of the main theorem.
The proofs of the lemmas are in the next section.

First note that for a relation f on R™ with a C” hyperbolic fixed point z,,
[ is locally the graph of a function f. More precisely, for any p and & < r,
there is a neighborhood of z, such that for some splitting R = £E* x E* on
this neighborhood, f is the graph of function f, which is of the following

()= (518em)

where z € E°, y' € B, a and b matrices, |a|, [0] <1, and g and g, functions
which have all derivatives of order < k Lipschitz with Lipschitz constant p.

form:

10



Motivated by this local expression of a hyperbolic relation as the graph
of a function, we consider some definitions for relations on Euclidean space
Z which are graphs of functions with certain properties for some coordinate
system. We call these functions “associated” functions and call the coordi-
nates “skewed” coordinates, represented by X and Y, where 7 = X xY, and
X and Y are Euclidean. Note that not every relation is the graph of such
an associated function; these definitions are specifically intended for work-
ing with relations with hyperbolic fixed points. Also notice that the skewed
coordinate system is not unique in any of the definitions below. However,
once we choose a coordinate system, if there is an associated function in the
coordinate system, then it is unique.

Notation: In all that follows, a relation is represented by a letter, and
an associated function for this relation by the same letter underlined.

Definition 10 (Lipschitz Relations) A relation f is Lipschitz of order
A, or f € Lip,, when there is an associated function f € Lip, such that

(w.y) ¥ (a'y)) & fla.y) = (2, y).

Lemma 2 Suppose a relation f in Lipy, A < 1 has an associated Lipschitz
Junction [ described in the above definition. Then the relation f is C" exactly
when the associated function f is C".

The proof of the above lemma follows from the implicit function theo-
rem. It is tacitly assumed in the following lemma, which states that the
composition of two Lipschitz and C" relations gives another Lipschitz and
C" relation.

Lemma 3 Let « < 1 and r > 0. If g, relations in Lip, and C" on
Z =X XY, with associated functions in the same skewed coordinates, then
I'og € Lip, and C" as well.

Given relation f, for a relation ¢, define G by G(¢) = fo¢o f. The
following lemma says that for f with a hyperbolic fixed point and certain ¢,
G is a contraction.

Lemma 4 Let f satisfy the hypotheses of theorem 1 and o < 1. For suitably
small neighborhood of the fixed point, assume ¢ is Lip, with assoctated func-
tion in the same skewed coordinates as f. Note that {¢} lies in the Banach
space of Lip, relations in a fired skewed coordinate system with the norm
being the sup norm on the associated functions. Then G s a contraction in
the sup norm on the associated functions.

11



Since G is a contraction in the space of Lip, relations, G has a unique
fixed point which is also in the space of Lip, relations, and any such relation
converges to this fixed point. In fact we can choose a neighborhood €2 such
that f is an appropriate Lipschitz relation in the domain of G. Thus on this
neighborhood, the fixed point is equal to lim;_., f*. Call this fixed point
relation h and its associated function A. The above lemma guarantees that
h is Lipschitz on €. In fact, h is also C” on €2, as is restated below.

Lemma 5 Assume f € C” satisfying the hypotheses in theorem 1, and for
Q a neighborhood of z, such that on € the fized point relation s Lipschitz
and equal to limy_. f*. Then h is C" on S).

Definition 11 (w-limit relation) Given the relation f on compact metric
space 7,
[ = Np>1Upsn fE,

where f* is the composition of k copies of f.

The following lemma states that the relation A defined above is equal to
the w-limit relation:

Lemma 6 f~“ =h.

The next two lemmas state that w-limit relation is locally the cross
product of the stable and unstable manifolds.

Lemma 7 For a relation f satisfying the hypotheses of theorem 1, there is
a neighborhood of the fized point such that if w € W*(z,) and v € W*(z,)
then (u, z,) and (z,,v) are contained in f*.

2

In fact, a stronger statement holds; the following lemma states that ¢
relates every point in W#(z,) to every point of W¥(z,).

Lemma 8 For a relation f satisfying the hypotheses of theorem 1, there is
a neighborhood of the fized point such that v € W*(z,) and v € W"(z,) <
(u,v) € f«.

Proof of theorem 1: By lemma 8, the stable an unstable manifolds are
projections of f«. Precisely, f¥ = W¥(z,) X W"(z,). By lemma 7, this
set equals {u: (u,z,) € f“} x{v:(z,,v) € f“}. By lemma 6, h = f¢;
by lemmas 5 and 2, h has an associated C" function h. In terms of the
splitting, denote z, = (z,,v,). W?* x W* = {(z,y) : b(z,y,) = (z,,y)} X
{(z,w) : h(zo,w) = (2,9,)}. Thus both W* and W*" are locally the graphs
of C" functions. O

12



5 Proofs of lemmas

Proof of lemma 3: The proof is an application of the C” and Lipschitz
implicit function theorems. Since it is less common than the C” implicit
function theorem, we state the Lipschitz version here.

Theorem 9 (Lipschitz implicit function theorem) If X andY are met-
ric spaces, and F : X XY — X is a continuous mapping F € Lipy, A < 1,
then there ewxists function g 1Y — X, g € Lipy such that

F(r,y)=r&z=g(y)

Proceeding with the proof of lemma 3, we need to show that if g, I' €Lip,,
and C”, then there exists a Lip, and C" function I' o g such that (z,y, 2", y") €
['og exactly when I o g(z,y") = (2", y). Define a function F : Z x Z x Z —
Z x Z by -

F((z", "), (', y), (z,y")) = (D(z",y"), g(z,y)) (20)

Since F is Lip, and has no unit norm eigenvalues, by the implicit function
theorem, there exists a Lip, and C” function m : Z — Z X Z such that
12 /! !

F(z" g, 2"y, x,y") = (2", ¢, 2", y) exactly when m(xz,y") = (", vy, 2", y).
Thus (m,;,m,) =T og. O

Proof of lemma 4: This proof is a series of estimates. The key to the
estimates is that f and the domain of G are Lipschitz.

Assume that f is as in the theorem, and we have picked a neighborhood
and splitting so that equation 19 holds and g ,g, are Lip, functions. Let
A =max(|a|, |b]) + . Assume we have chosen a small enough neighborhood
that A +ap < 1.

(Note that f € Lipy.)

For a relation ¢ with associated function 1, let ||.|| denote the sup norm,
and let 1) = (11,1)2) be the components of the associated function.

We want to show that for any relations ¢, € Lip,, there is some uniform
constant § < 1 such that ||G(y) — G(¢)|| < 0||¢» — ¢||. This is equivalent to
showing that supx:E‘y,,,:,I,,,m,m’”,T) &,n, " n" , where
(z,y, 2" y") € G(¢), and (&,n,&".n"") € G(¢).

If (z.y,2",y") € G(¢), and (&,n,&".n"") € G(v), then there exist

" y", & . £",n" such that

A ( " / /l/

L (@ umu",f @
N

f
&) S (€ ") (f”ﬂn’”) (21)

13



The following inequalities hold:

|x/// _ £NI| — |a/x// + 21 (17//7 y///) _ af// _ 21 (6//7 77/”)| (22)

S A|x// _ €II|’ SiIlCC y/// — /’7///
and |27 =" = |¢u(2"y") — (0" (23)
< amax(|e’ =&, |y" = n"[) +[|¢ — ¢, since ¥, ¢ € Lip,

Similarly,

2" =& < ply' =] (24)
y" ="l < pla” =& (25)
' =0l < emax(|z’ =, [y" —n"D+ ¢ -l (26)
ly—nl < Ay’ =7l (27)

If we let A = max(|z” —&"|, |y’ —7'|), then from the above equations,
we have

A

IA

apd + g — |l so (28)

1
—— ¢ - vl
—

A

IA

SUp,—¢ =y [(@,y, 2" y") = (§,m, 87, n™)| < Olly — ¢f|. O

Thus for 6 = 5 ’\Q < 1, which is guaranteed by our original assumption,

Proof of lemma 5: To show that h € C" when f € C", we first show that
there is a neighborhood of the fixed point of f such that the limit relation of f
restricted to this neighborhood is C". To do this, we use the fiber contraction
theorem [3] to show that the map G is a C' contraction when f is C'. G is
locally a C" contraction when f € C” by an induction argument. In order to
show that h is a C'" relation on the original neighborhood, the relationship
between h and the limit relation on a smaller neighborhood bears further
comment. To this end, we prove that h is equal to the limit relation on
the smaller neighborhood composed with finitely many C” subsets of f.
Therefore h is C” on the entire original neighborhood. We use the following
definitions and lemmas; the central proof follows their statements and proofs.

The following is a definition of a derivative relation of a smooth relation.

14



Definition 12 (Tangent Relation) Given a smooth relation T' on RP, the
tangent relation TT on R* is the tangent bundle of T'.

If a relation has an associated function, then its tangent relation has an
associated function, as described in the following lemma.

Lemma 10 For a smooth relation T on RP = X XY with associated function
L, TT is the graph of (L, DL). In other words, (z,y,z'.y',&,n, & n') € TT
exactly when (z,y,7',y') € T and DL(z,y /&, 7') = (¢€,7).

Proof This is due to the fact that a graph of a smooth function has tangent
bundle equal to the graph of the derivative of the function. O

Lemma 11 (Derivatives and composition) Assume that T' and g are
smooth relations with associated functions, and (xz,y,z",y") € T'og. Then
locally there exist «' and y' such that the graph of D(T o g)( ) equal to
.qra,pll(DL(x,y,,)) o .qra,pll(ngy,)). In terms of tangent relations, locally
Tl oTg=T(Toyg).

Proof of lemma 11: In the proof of lemma 3, we showed that locally there
are a unique z’ and y' which are functions of (x,y”) such that

(z,y) & (2. y') v (2", y") (29)

We know that 3y’ = £2(21 (z,vy'),y"). For the coordinate system R" =

Dlﬂl D2g1>

E¢ x E", write the derivative matrices in the form Dg =
- Dlgz Dggz

Implicit differentiation gives
Dy’ = (1 - D1£2D2g1)_1 (D1£2D1Q17 D,T,) (30)

where all derivatives are evaluated at (z,y,z’,y’,z",y"). It is now possible
to write the derivative of ' o g explicitly. Comparing this derivative to the
function associated with graph DL, . o graph Dg( ) shows that they are

’

equal. O

Lemma 12 Let a < 1, g and T’ both be Lip, C” relations on the compact
set V' ; assume that in the coordinates V.=V, x Vy, there is a contraction g
associated with g. Also assume that for Uy CVy and Us C Vs, g: Uy X V5 —
Viand g : Vi x Uy — V. Let T' be a relation on V. Then g ol o g 15 Lip,
and C" on Uy x U,.

15



Proof of lemma 12: Define the function F : V x V xV xU — V x

VxVas E((z",y). (=", y"), (2", ¢/). (z,y")) = (g(z",y"). L(z". y"), g (2, 9/)).
Proceed using the implicit function theorem as in the proof of lemma 3. O

The final lemma is the fiber contraction theorem due to Hirsch and Pugh.
Its proof can be found in [3].

Lemma 13 (Fiber contractions) Let U be a map on a space X with at-
tractive fixed point p. For each x € X, let X, be a map on metric space Y
such that O(x,y) = (V(x), T.(y)) is continuous on X X Y. For fired A < 1
and each x, let each Y, € Lipy. Then there is an attracting fixed point (p,q)
for ©.

Finally, the following definition makes the notation more convenient:

Definition 13 ((C",e) and (Lip”,e) Small Relations) A relation is (C",
€) small if there is some associated function which is (C", €) small; in other
words, there is an associated function which s C", and all its derivatives of
order < r are Lip.. A relation is (Lip".e) small if it is (C", €) small and the
r'" derivative of the associated function is Lip,.

Using these lemmas, the proof proceeds as follows: Let f be a C" relation
on R" with hyperbolic fixed point at z,, as in theorem 1. Let Q be a
neighborhood of the fixed point such that lim;_ ., f/ = h, as described in
the discussion after the statement of lemma 4. Let p and A be as in the
proof of lemma 4, and let z, = (x,, y,) in terms of the splitting.

First we show G is a C' contraction when f is C' (r = 1). Since T'f
is not necessarily Lipschitz, we cannot just apply lemma 4 on the tangent
bundle. However, as in the diffeomorphism case, we can still prove the result
using the fiber contraction theorem.

Let ¢ be a Lipy relation on R*" such that ¢ = (p, L). p a relation on R",
and L(x,y’,.) linear. Consider the map TG : ¢ — Tfo¢poTf. We verify
the conditions for the fiber contraction theorem for T'G; mT'G has attractive
fixed point h. Near (z,,v.), Df(z,y') is close to D f(z,,y,) in linear norm.
Thus we can use estimates similar to those in the proof of lemma 4 on ©,7T'G
on a neighborhood of (z,,¥,.0,0). On such a neighborhood, for fixed p and
varying L, msT'G is Lip, in the sup norm. By the fiber contraction theorem,
TG is a contraction in the sup norm on relations ¢ above. Thus TG is
a contraction when ¢ = Tp, where p is a (Lip',u) small relation on R".
Therefore G is a C' contraction on (Lip',x) small relations.

16



For the case r > 1, proceed by induction. Assume that for all relations
g € C"~" on with hyperbolic fixed point on R, and for p (Lip"~',u) small,
that p — go pogis a C"! contraction. Choose g C", hyperbolic. By our
assumption, Tp — TgoTpoTg is a C"! contraction when p (Lip”,u) small
relations. Therefore p — go po gis a C" contraction.

We have so far shown that for f € C", there is an e such that on a ball of
radius € of the fixed point, G is a contraction in the C” sup norm on (Lip”,
i) small relations. The limit relation on this small ball is thus C". We now
use the smoothness of the limit relation on the small balls to show that the
relation h is C" on all of €.

Choose 7. Denote the ball of radius € of the fixed point by B! x B?. Let
I' be the C” fixed point of G restricted to this ¢ ball. Note that I' C &, since
it can be described as the limit of iteration of the relation f|B1 B2

For A described in the proof of lemma 4, if |(z,y) — (2., y.)| < %, then
|f(z.y) = (20.9o)| < €. Thus f: B% X B? — B! x B and f : B! x B% —
B! x B?. Thus by lemma 12, foT o f is Lip, and C" when restricted to the
set B 17 X 32T

This new relation is also a subset of h since if f C f/ and ' C I, then
fol'C f'ol'. We know that ' C h. Thus fol'of C foho f=h.

Now iterate this process of composing with f and restricting to a neigh-
borhood; eventually we have a Lip,, C" relation on €. Since this relation is
contained in h and both are associated with functions on €, the relations
must be equal. Thus h is C" on Q. O

Proof of lemma 6: Assume that we have a neighborhood and splitting
as in f equation 19. We show that there is a sequence in f* converging
to a limit point (z,y, z,w) exactly when there is a sequence k; such that
lim; . f* (2, w) = (z,y).

First we show that A C f*; from the definition,

f“= {u g, — u for some uy, € fk} . (31)

By lemma 4, f — fofof+ f° ... maps to h in the sup norm on the
associated functions. Thus for all (z,w) and odd k, f*(z,w) has a limit, and
the limit is equal to h(x,w). Thus u, = (Jc,f_kz(:c,_w),f_"’l(m,w),w) shows
that h C f«.

Conversely, to show that f“ C h, suppose n = (z,y,z,w) € f¢ and
U, = (T, Y,y 21, Wi, ) s the sequence in f* guaranteed by equation 31
such that |uy, —n| — 0. Define v;, = (:U,if"(x,w),ﬁ“(w,w),w). Then
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| — e, [SI 0 — g, |+ [ur, — o, | (32)

The first term on the right goes to zero by construction. In addition, since f
is in Lip,, the second term is less than or equal to the first term. Therefore
it goes to zero as well. Thusnp € h. O

Proof of lemma 7 follows from lemma 8. O

Proof of lemma 8: Assume that we have a neighborhood and splitting
described in equation 19 and that in terms of the splitting, the fixed point is
denoted by (z,,y,). Assume (z,y) € W*(z,,y,) and (z,w) € W (z,,y,). In
the proof that follows, we look at the forward k-iterates of a neighborhood
of (z,y) and the backward k-iterates of a neighborhood of (z,w). For large
k, near the fixed point, a portion of the forward iterates form a Lipschitz
“vertical” curve, and a portion of the backward iterates form a Lipschitz
“horizontal” curve. The two curves are near each other, and thus intersect,
implying the existence of a point near (z,y) with a 2k-iterate near (z,w).
More precisely, we use this idea to show that for any €, K there exists £ > K
and a point (s,t,u,v) € f* such that dist((=,y, z,w), (s,t.u,v)) < € and thus
(z,y,z,w) € f.

Let € be given. We know that there exist sequences (zy, yi), and (2, wy)
both converging to the fixed point, (z,y, 24, yi) € f* and (2, wy, z, w) € fF.
For a small 4, let k be large enough that distance from (zy, y;) to (2, wy)
is less than 6.

Now look at an € ball of y;, in Y. For the point (x,7’), where 1 is in the
¢ ball, we have the point (z.7,¢',7') € f*¥. The set of points (£/,n') form
the graph of a Lipschitz function from Y to X near (zy,y:), each point of
which is related to a point near (z,y) by f*. Similarly, there is a graph
of a Lipschitz function from X to Y near (z;,w;), and a point near (z,w)
is related to each of the points in this graph. But if ¢ is small enough,
these Lipschitz graphs must intersect. Thus there is a point (s.t,u,v) € f2*
within € of (z,y, 2z, w). We conclude that (z,y,z,w) € f.

Conversely, assume (x,y,z,w) € f*. Therefore for any &k > 0, there
are points near (z,y) with k forward iterates. Using compactness, we show
that (z,y) has an infinite forward orbit. Using the fact that f € Lip,,
we show that the forward orbit must converge to the fixed point, and thus
(z,y) € W(x,,y,). Likewise, (z,w) € W"(z,,y,).
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Let B.(z,y) be the closed € ball of (z,y), and define the set
S¥(z,y) = {(€.n) € Bz, y) : (€.7) has a k' iterate}

Sk(z,y) is nonempty, by the assumption on (z,y). It is compact, since f
is closed, which implies f* closed [4] and thus compact. Thus N.S*(z,y) is
nonempty, since it is the intersection of non-empty nested compact sets. It
is equal to {(x,y)}, since this is the only point it could contain. Therefore
(7,y) has a k' iterate (xy,y;) for every k. Thus there exists an infinite
forward orbit starting at (z,vy). By compactness, there exists a limit point
(z/,w’). Thus (z;,y;, 2", w") € f for the same z’,w’ for all j.

Since (xj,y;,2",w') € f« for all j, if (z4.y;) and (z;,y;) are in this
forward orbit, then |y; — yi| < Az; — x|

Since f*is Lip, for every k|71 — x| < Amax(|zp_1 — i, [yres — i) <
Amax(|zp_1—zk|, A|zri1—zk]). Thus |24 —2k| < Azr_1—2|. This Cauchy
sequence implies that x; converges to a unique z,. Likewise, ¥; converges
to a unique w,. This means that (zg, Y, Tri1, Yer1) — (2o, Wo, 2o, W,). Since
fis closed and (g, yp, Try1,Yer1) € fy (2o, Wo, 20, w,) € f as well. The
unique fixed point of f is (z,,y,). Therefore (zy,y;) converges to (x,,y,).
Therefore (z,y) € W*(x,,y,). Similarly, (z,w) € W¥(x,,y,). O
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