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Mathematicians have been iterating diffeomorphisms for about a century.
Early activity centered around diffeomorphisms as section maps arising from
ordinary differential equations, but the viewpoint gradually evolved until the
iteration of diffeomorphisms became interesting in its own right. Recently,
research into the dynamics of noninvertible maps has blossomed as an integral
part of the study of chaos and fractals. Even more recently, the iteration of
finite sets of contraction maps has been studied.

The next step of the evolution is to consider the iteration of relations. A
relation on a space is a subset of the Cartesian product of the space with itself.
The graph of a map is an example of a relation. Since the graph of a continuous
map is a closed subset of the Cartesian product, it seems natural to study
the iteration of closed relations. Although it is certainly important to study
dynamics on noncompact spaces, only compact Hausdorff spaces are considered
here.

At first glance, this setting seems hopelessly general, and one is tempted
to conclude immediately that no interesting structures exist at this level
of abstraction. However, it is demonstrated below that the concept of an
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“attractor” generalizes to this setting and that some of the important properties
of attractors generalize as well. In particular, it is shown that every attractor
for a relation on a compact Hausdorff space has an associated attractor block.
Indeed, the proof in this case seems conceptually simpler than the proof for
maps.

A bijective map f always has an inverse f~!. This fact provides an elegant
symmetry that pervades the terminology that evolved to study diffeomorphisms.
For example, an “orbit” is a sequence p; satisfying p;y1 = f(pi;)- Through
every point there is a unique orbit which extends infinitely both backward and
forward.

However, a more general map does not necessarily have an inverse, a fact
which leads to asymmetry. For example, a unique infinite forward orbit exists
through every point, but a backward orbit through a point may not exist, or, if
it does exist, it may not be unique.

The symmetry is restored by considering relations. It then becomes possible
to define the analog of the inverse of a bijective map, although it is less confusing
to call it the “transpose.” If f is a relation, then the transpose of f is the
relation obtained by reversing the ordinate and the abscissa. More precisely, the
transpose of f is defined as

ff={(=y): (y,x) ef}
An “orbit” in this setting is a sequence of points p; satisfying (p;,pi+1) € f.
Although the symmetry is restored, the cost is high. Now a forward orbit
through a point may not exist, or, if it does exist, it may not be unique.

Another useful aspect of the symmetry is that a “repeller” can be defined
to be an attractor for f*. Every attractor has a dual repeller, defined as the set
of all points not attracted to the attractor. For example, the so-called “filled
Julia set” for the map f(z) = 22 + ¢ on the Riemann sphere is the repeller dual
to the attracting point at infinity. Indeed, the Julia set is an attractor for the
transpose of f, which is a relation but not a map. This viewpoint is discussed
further in Section 11.

Besides the restoration of symmetry, there is another reason to iterate
relations. If one considers a map f on a metric space, then an e-pseudo-orbit
for f is a sequence p; satisfying d(p;1+1,f(pi)) < €. One sees easily that an
e-pseudo-orbit is an orbit for the relation

fe={(z,y) :d(y,f(z)) <e}.
Thus, in addition to providing an abstract framework for generalizing properties
of iterates of maps, the study of iteration of relations includes pseudo-orbits as
a special case.

Pseudo-orbits show up repeatedly in this paper in a slightly disguised form.
Although there is no metric in a Hausdorff space, one can consider a pseudo-orbit
for a relation f to be an orbit for a neighborhood g of f. It is important to note
that a neighborhood of a relation is just another relation and therefore can be
iterated.
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The dynamics of relations have been studied by other authors. Bullett
considered the iteration of certain quadratic correspondences [4]. In a series of
papers, Langevin, Walczak, Przytycki, and Nitecki developed a theory of entropy
for relations [15,14,19]. Akin has developed a general theory for iteration of
relations on compact metric spaces [1]. There is considerable overlap between
Akin’s work and this paper. In particular, the ideas about attractors, attractor
blocks, repellers, and connecting orbits all can be found in Akin’s manuscript.
However, the terminology, the development of the ideas, and the proofs of the
theorems are substantially different. For example, the theory developed here
applies to Hausdorff spaces, so the independence from the metric is automatic.
Also, the development of the results on restrictions of relations appears to be
unique to this paper, as does the use of the omega limit set of a set as a major
tool in the proofs.

1. RELATIONS ON SETS

It is interesting to begin by developing some basic properties of relations on
arbitrary sets with no additional structure. The results are stated without proof
and are all elementary; some can be found in Chapter 0 of Kelley’s General
Topology [13]. Throughout this section, X will denote a set.

Definition. A relation on a set X is a subset of X x X.

Recall that a map is a relation f with the additional property that, for
every x € X, there exists a unique y € X satisfying (z,y) € f. The image of a
set under a map has a direct analog for relations.

Definition. Let f be a relation on X, and let S C X. The image of S
under f is the set
f(S)={y € X :3z € S satisfying (z,y) € f}.
Implication (1) of the following lemma is a direct generalization of the same

property for maps. Implication (2) has no analog for maps. Both implications
follow immediately from the definition.

Lemma 1.1. If f and g are relations on X, and if S and T are subsets of
X, then
(1) ScT = f(S)C f(T) and
(2) fcg = f(S)cy(S).

The standard projection maps will be useful in the discussion. For i =1 or

2, denote
Wi:XXX—?XI(.Tl,.’Ez)I—).’II,;.

Lemma 1.2. If f is a relation on X and if S C X, then

f(8) = ma(f Ny (8)).
The complement of a set S will be denoted S°.
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Lemma 1.3. If f is a relation on X and if S and T are subsets of X, then
f(S)CT < fN(SxT° =o0.

The image of a relation distributes through intersection and union in the
same way as for maps.

Lemma 1.4. If f is a relation on X, and if & is a set of subsets of X,
then

(1) F(U{S:5€6})=U{/(5):5€6}, and
2) fF(N{S:5e6}) cN{f(5):5€6}.

The following convenient notation will be used for a relation f and a point

T € X.
f(z) = f({z}).

A relation f therefore can be thought of as a set-valued function on X, the
image of a point x being the set of all points related to « under f.

(1-1) y € f(z) <= (z,9) € f.

The inverse image of a set S under a map is the set of all points which map
to S. One way to generalize this concept is the following.

Definition. If f is a relation on X and if S C X, then the inverse image
of S is the set
fUS)={reX: f(z)C S}

Note that, in the case that f is a map, this definition reduces to the
standard one. For maps, the inclusions given in the following lemma hold. The
lemma shows that they hold for relations as well.

Lemma 1.5. If f is a relation on X and if S C X, then

FUETHS) € S c 7Y (f(9)).

Neither inclusion of the previous lemma can be replaced by equality, even
in the case of maps. Recall, however, that f(f~1(S)) = S for surjective maps,
while f=1(f(S)) = S for injective maps.

The following lemma is an immediate consequence of the definition.

Lemma 1.6. If f is a relation on X and if S C T C X , then
f7H8) C £7HD).

The following example shows that f~! is not, in general, generated by a
relation on X.
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Example 1.7. Let X = {0,1}, let f = {(0,0),(0,1),(1,0)}, let So = {0},
and let S; = {1}. Were f~! generated by a relation, property (1) of Lemma 1.1
would imply tha t f~1(SoUS1) = f~1(Sp) U f~1(S1). However, one checks that
FT1(SoUSh) = F1(X) = X, while f=1(So) US~1(S1) = {1} U0 = {1} # X.

Although the definition of inverse image will be useful in what follows, it
is not the only way to generalize the inverse image of a map. The following
definition of the transpose of a relation is another generalization with the
additional property that it is itself a relation.

Definition. If f is a relation on X, then the transpose of f is the relation
ff={=zyeXxX:(yx)ef}

Note that (f*)* = f. Note also that, if f is a function, then both f*(S)
and f~1(9) give the usual definition of the inverse image of the set S, as stated
next.

Lemma 1.8. If f is a map on X and if S C X, then f*(S) = f~1(9).

Although the inverse image and the transpose are not identical for general
relations, they are related by the equality given in the following lemma. This
equality will be useful later.

Lemma 1.9. If f is a relation on X and if S C X, then
FH8)° = f1(S5°).

To be able to iterate something, one must be able to compose it with itself.
The following definition generalizes the definition of composition of maps.

Definition If f and g are relations on X, then the composition of f with
g is the relation

fog={(z,2) € X x X : 3y such that (z,y) € g and (y,2) € f}

There are two important properties of composition which allow for the
iteration of relations. The first is that composition is associative. The second is
that the image under composition is the successive images under the relations.
These properties are given in the following lemma.

Lemma 1.10. If f, g, and h are relations on X, and if S C X, then both
of the following properties hold.

(1) fo(goh)=(fog)oh.
(2) (fo9)(S) = f(9(5))-
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The composition of two relations can be characterized in terms of the
following projection maps. For each of the three pairs (4,5), where 1 <i < j <3,
let

Tij : X X X x X = X x X : (21,22,23) — (4,7;).

The characterization is given in the next lemma.

Lemma 1.11. If f and g are relations, then

fog=mua(ny!(f) Ny (9))-
It is also useful to note that composition preserves inclusion in the sense
given by the following lemma.

Lemma 1.12. If f, g, f', and g’ are relations and if f C f' and g C ¢/,
then fog C f'oyg'.

If f is a bijective map on a set X and if Y C X, then f restricted to Y
is again a bijective map if and only if f(Y) =Y. If f is a map on X, then f
restricted to Y is again a map so long as f(Y) =Y. However, in the case of
relations on X, any relation can be restricted to any subset Y to form a relation
onY.

Definition. If f is a relation on a set X and if Y C X, then f|, is the
relation on Y satisfying

fly =10y xY).

There is a subtle distinction between f|,, and fN(Y xY). The set
fN(Y xY) is a subset of X x X and hence is considered to be a relation on
X. On the other hand, f|, is a relation on Y and hence is a subset of Y x Y.
This distinction will make a difference later when X is a topological space and
Y carries the relative topology. Then care must be taken since a closed (or an
open) subset of Y might not be a closed (or an open) subset of X.

Even with this subtle distinction in mind, the next lemma is a complete
triviality. It is stated explicitly here for use in Section 5, where the distinction
becomes consequential.

Lemma 1.13. If f is a relation on a set X and if SCY C X, then
fly (8) = (fn(Y xY))(S) = f(S)nY.

The next two lemmas of this section are also trivial but will be useful in

later sections.

Lemma 1.14. If f is a relation on a set X and if Y C X, then

(N xY)ly = fly-

Lemma 1.15. If f is a relation on a set X and if Y and Z are subsets of
X, then

(le)IYnZ = (f|z)|Ynz = flynz-
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The final lemma, of this section states an elementary but valuable formula.

Lemma 1.16. If f is a relation on a set X and if S and Y are subsets of
X, then
fly (SNY) = f(SNnY)NnY.

2. RELATIONS ON COMPACT HAUSDORFF SPACES

The properties discussed so far apply to relations on an arbitrary set X.
In this section, properties for relations on a compact Hausdorff space will be
developed.

If S is a subset of a topological space X, then the closure of S is denoted
by S, and the interior of S is denoted by S°. A neighborhood of S is a set
U containing S in its interior. That is, there exists an open set V satisfying
S CcV cU. If U itself is open, it is called an open neighborhood of S; if U is
closed, it is called a closed neighborhood of S. Since a subset K of a compact
Hausdorff space is closed if and only if it is compact, a closed neighborhood in
a compact Hausdorff space is automatically compact.

The following notation will be useful in this and other sections.

N(S; X) ={U : U is a neighborhood of S in X},
N(S;X) = {G : G is a closed neighborhood of S in X }.

For a given symbol, such as S, denoting a subset of some ambient space, the
identity of the ambient space is usually implicit in the text, in which case the
set of neighborhoods of S in the ambient space will be denoted simply as J(.5).
Similarly, the set of closed neighborhoods of S will be denoted as 9%(S). The
explicit reference to the ambient space will be written only when there is a
possibility of confusion or when special emphasis is intended.

A relation f on a compact Hausdorff space X is called closed if f is a closed
subset of X x X.

Here are the main results of this section.

Theorem 2.1. If f is a closed relation on a compact Hausdorff space X
and if K is a compact subset of X, then f(K) is compact.

Theorem 2.2. If f and g are closed relations on a compact Hausdorff
space, then f og is closed.

Theorem 2.3. If f is a closed relation on a compact Hausdorff space X, if
K is a compact subset of X, and if U € N(f(K)), then there exists a V € N(K)
such that f(V) CU.

Theorem 2.4. If f is a closed relation on a compact Hausdorff space
X, if K is a compact subset of X, and if U € N(f(K); X), then there erists a
g € N(f;X x X) such that g(K) C U.
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Theorem 2.5. If f and g are closed relations on a compact Hausdorff
space X and if h € N(fog; X x X), then there exist f' € N(f; X x X) and
g € N(g; X x X) such that f'og’ C h.

Recall that the image under a continuous map of a compact set is compact.
Theorem 2.1 states that the same result holds for closed relations on compact
Hausdorff spaces. Similarly, Theorems 2.2 and 2.3 are analogs of results for
continuous maps. Theorems 2.4 and 2.5 are also analogs of results for maps
in the sense that g can be considered as a perturbation of f. Note, however,
that the topology of the appropriate function space has been replaced by the
topology of X x X.

The proofs of these theorems will be given at the end of this section after
some standard results are recalled in the form of the following lemmas. These
lemmas are all standard, and the proofs are omitted. The first is an elementary
result about intersections.

Lemma 2.6. If G and T are sets of subsets of a set X, then the following
statements hold.

(1) If6C %, then T CNG.
(2) If, for every T € %, there is an S € & such that S C T, then S C NZ.

The next lemma is a standard result about the product topology.

Lemma 2.7. If K and L are compact subsets of a topological space X and
if U € WK x L; X x X), then there ezist a V € N(K;X) and a W € N(L; X)
such that V. xW C U.

The next lemma is equivalent to the finite intersection property for compact
topological spaces.

Lemma 2.8. If R is a set of closed subsets of a compact topological space
and if U is a neighborhood of (R, then there erists a finite subset § of & such
that \FC U.

The next lemma is a minor restatement of the basic result that a compact
Hausdorff space is normal. It is followed by a corollary, which is also a simple
restatement of normality.

Lemma 2.9. IfK and L are disjoint closed subsets of a compact Hausdorff
space, then there exists a G € M(K) such that G and L are disjoint.

Corollary 2.10. If K is a closed subset of a compact Hausdorff space
and if U is a neighborhood of K, then there exists a closed neighborhood G of K
satisfying G C U.

The next lemma is a simple exercise using normality and the definition of
relative topology.
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Lemma 2.11. If X is a compact Hausdorff space, if Y is a closed subset
of X, if K is a closed subset of Y, if U € W(Y;X), and if V € N(K;Y), then
there exists a G € WK ; X) such that G C U, and GNY C V.

The final lemma, of this section is a standard result stating that a closed set
is determined by its neighborhoods.

Lemma 2.12. If K is a closed subset of a compact Hausdorff space, then
K = NN(K) = NN(K).

The remainder of this section consists of the proofs of the five theorems
stated above.

Proof of Theorem 2.1. Lemma 1.2 implies that f(K) = mo(f N7 (K)). Since
my is continuous and since K is closed, m; }(K) is closed, hence compact.
Therefore, fNm 1(K ) is compact, which, since my is continuous, implies that
f(K) is compact. i

Proof of Theorem 2.2. Lemma 1.11 implies that fog = m3(m5s (f) N7 (9))-
Since ma3 and 72 are continuous and since f and g are closed, 755 (f) and
T3 (g) are both closed. Therefore, w5, (f) N7y, (g) is closed, hence compact.
Since 73 is continuous, f o g is compact, hence closed. O

Proof of Theorem 2.3. It suffices to establish the conclusion under the assumption
that U is open. Since f(K) C U, Lemma 1.3 implies that fN (K xU°) = @,
which implies that K xU¢ C f°. Since f is closed, f¢ is open. Since U
is open, U° is closed, hence compact. Lemma 2.7 implies the existence of
neighborhoods V of K and W of U® such that V x W C f¢. It then follows
that fN(VxU° C fN(VxW) = @, from which Lemma 1.3 implies that
f(v)ycu. m|

Proof of Theorem 2.4. As before, it is sufficient to assume that U is open. Since
f(K) C U, Lemma 1.3 implies that f N (K x U¢) = @. Since f and K x U¢ are
closed, Lemma, 2.9 implies the existence of a closed neighborhood g of f such
that gN (K x U°) = @. Lemma 1.3 implies that g(K) C U. |

Proof of Theorem 2.5. As usual, it suffices to assume that h is open. Lemma 2.12
implies that f = (N(f) and g = NN(g). It follows that

s (f) = N{mg (F): F € N(f)},  that
T2 (9) = {75 (G) : G € N(g)}, and that
p=(1R],  where
¢ =713 (f)Nr(9), and where
A= {rg(F)N715(G): F € N(f) and G € N(g) }.
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Now let
Y=g (h).

Since h is open and since 73 is continuous, it follows that ¢ is open. Lemma 1.11
implies that f o g = m13(¢p), which, since f o g C h, implies that ¢ C 73 (fog) C
n5 (h) = 9. Therefore, ¢ is a neighborhood of ¢. Since F and G are closed
and since mo3 and w2 are continuous, each 7r2_31 (F) ﬂ7r1_21(G) is closed; hence &
is a set of closed subsets of X x X x X. Since ¢ = (&, Lemma 2.8 implies the
existence of a finite subset of & whose intersection is a subset of 1. Therefore,

() 72 (Fe) N7t (Ge) C 9,
k=1

where Fy, C N(f) and G C N(g) for k = 1,...,n.
Now let f/ = Ny_,Fx and ¢’ = N;_,Gkr. Note that f' is a closed
neighborhood of f and that ¢’ is a closed neighborhood of g. Furthermore,

()N () = m (N Be) 0 (N 65) = Mm@ 0 ) 72(6)
k=1 j=1 k=1 j=1

= 7= Fe) N7 (G5) C ()75 (Fr) N7y (Gr) C 9.
k=1j=1 k=1

Therefore, Lemma 1.11 implies that
fog = ma(ny (f)N735 (") C ms(¥) = h,

and the proof is complete. O

3. ITERATION AND ORBITS

One of the fundamental concepts in dynamical systems is that of an orbit.
For a map, an orbit is simply the succession of images of a point. For a relation,
a point may have no image point, or it may have many image points. An orbit
for a relation is one of the many possible successions of images.

For a relation f on a set, the following notation is suggestive of orbits, and
will be used frequently.

f
Ty <= (z,y) € f.
If the relation f is understood from the context, as it is throughout most of this
paper, then its explicit reference is dropped. Thus
Ty & NN y.

Definition. If f is a relation on a set X, then an orbit for f is a pair (p,I),
where I is an interval of Z, either finite of infinite, and where p : I — X satisfies

Di & Di+1, Wwheneveri €l andi+1€l
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If (p,I) is an orbit and if J is an interval of Z, then
pr={pi:i€InJ}.

Note that, if INJ = @, then p; = @.

The composition of relations has a sufficient number of pleasant properties
to allow for the iteration of relations. To define precisely the nth iterate of a
relation it is convenient to introduce the diagonal, or identity, relation defined
as

d={(z,y) eXxX:z=y}
This relation has the property that, for any relation f,
foid=ido f=f.

Definition. If f is a relation on a set and if n is a nonnegative integer,

then the relation f™ is defined inductively by

f°=id, and f"=fof"l, forn=1,2,3 ....

There is, of course, a connection between iteration of a relation and orbits
of a relation, as shown in the following theorem.

Theorem 3.1. If f is a relation on a set X, if I is an interval of Z, and
ifp: I — X, then the following statements are equivalent.

(1) (p,1) is an orbit for f.
(2) pitj € f?(p;) whenever j >0,i€ I, andi+j€I.

J
(3) pi vf—»pi+,~ whenever j > 0,1 €I, andi+j € 1.

Proof. The equivalence of (2) and (3) is an immediate consequence of
statement (1-1). Statement (3) reduces to the definition of orbit when j = 1,
so the implication (3) == (1) is trivial. There remains only to show that
1 = (2

Assume that (p,I) is an orbit for f, and fix ¢ € I. Statement (2) will be
proved by induction on j. First note that the statement is trivial if j = 0, and
assume that the statement has been established for j = k. If i+ k+ 1 ¢ I, then,
since I is an interval, it follows that i+ j ¢ I for all j > k+1 and hence that
the conclusion holds. Assume therefore that i+k+1 € I. By the inductive
hypothesis, {p;+x} C f*({p;}). Lemmas 1.1 and 1.10 and the definition of f"
imply that

F{pirk}) C F(F5(Ep}) = (Fo ) {Up}) = £ ({pi}).
Since (p,I) is an orbit, it follows that (pj+k,Pi+k+1) € f- Therefore, p;1r+1 €
f(pisx) C f¥*1(p;), and the proof is complete. ]

The remainder of this section is devoted to the development of some
elementary properties of iteration. Analogues of these lemmas for compact
metric spaces can be found in Akin’s manuscript [1]. A standard induction
argument and the associativity of composition imply the first lemma.
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Lemma 3.2. If f is a relation on a set and if n and m are nonnegative
integers, then f*t™ = fo f™,

The proofs of the next two lemmas are simple induction arguments, the
first using Lemma 1.12 and the second using Lemma 1.13.

Lemma 3.3. If f and g are relations on a set, if f C g, and if n > 0, then
fmrcg”.

Lemma 3.4. If f is a relation on a set X, if SCY C X, and if n > 0,

then
(fly)™(S) = (fN(Y xY))"(S).

Since the composition of closed relations on a compact Hausdorff space is
closed, induction also implies that the iterates of a closed relation are closed.

Lemma 3.5. If f is a closed relation on a compact Hausdorff space, then
f™ is closed for alln > 0.

Closed relations have a semicontinuity property with respect to iteration.
If a relation changes by a small amount, then its n*® iterate changes by only a
small amount, as stated precisely in the next lemma.

Lemma 3.6. If f is a closed relation on a compact Hausdorff space X, if
n >0, and if h € N(f™; X x X), then there exists a g € N(f; X x X) such that
g" C h.

Proof. The lemma is trivial for n = 0. As an inductive hypothesis, assume
that the lemma is true for n = k. Let h be a neighborhood of f**1, and write
f¥+1 = fo f*. Theorem 2.5 implies the existence of closed neighborhoods ¢ of f
and v of f* such that @ ot C h. By inductive hypothesis, there exists a closed
neighborhood + of f such that v* C 1. Let g = ¢ N+, and note that g is a closed
neighborhood of f. Lemma 3.3 implies that g* C 4% C 9. Lemma 1.12 implies
that gk*! = gog* C potp C h. Therefore, the lemma is true for n = k + 1, and
the proof is complete. O

Another semicontinuity property is that small changes in the relation
produce only small changes in the image of a compact set under the nth iterate
of the relation.

Lemma 3.7. If f is a closed relation on a compact Hausdorff space X, if
K is a compact subset of X,ifn>0, and if U € N(f"(K); X), then there exists
ag € N(f; X x X) such that g"(K) C U.

Proof. Since f™ is a closed relation, Theorem 2.4 implies the existence of a
closed neighborhood h of ™ such that h(K) C U. Lemma 3.6 then implies the
existence of a closed neighborhood g of f such that g™ C h. Finally, Lemma 1.1
implies that ¢"(K) C h(K) C U. |
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4. INVARIANCE AND RELATED PROPERTIES

For a bijective map f, a set S is called “invariant” if f(S) = S. It is usually
called “forward invariant,” or “positively invariant,” if f(S) C S, while it is
called “backward invariant,” or “negatively invariant,” if f~1(S) C S. Confusion
develops when one tries to apply these terms to relations. For example, since the
properties f(S) = S and f*(S) = S, which are identical for bijective maps, are
logically independent for relations, it seems reasonable to call the first “forward
invariant” and the second “backward invariant.” However, this terminology
certainly would lead to unnecessary confusion. In this paper, the terminology
in the following definition will be used. Justification for this choice of names
is given below as various properties are developed. The section ends with an
attempt to maintain a foothold in the more familiar territory of maps.

Definition. If f is a relation on X and if S C X, then the following
terminology will be used.

(1) If f(S) € S, then S is called a confining set for f.

(2) If f*(S) C S, then S is called a rejecting set for f.

(3) If £(S) D S, then S is called a backward complete set for f.
(4) If £*(S) D S, then S is called a forward complete set for f.
(5) If f(S) =S, then S is called an invariant set for f.

(6) If f*(S) =S, then S is called a *-invariant set for f.

There are some trivial observations to make. A set is invariant if and only
if it is both confining and backward complete. A set is *-invariant if and only if
it is both rejecting and forward complete. A set is rejecting for f if and only if it
is confining for f*. A set is forward complete for f if and only if it is backward
complete for f*. A set is x-invariant for f if and only if it is invariant for f*.

The following lemma characterizes the above definitions in terms of the
notation given at the beginning of this section. The proof is elementary and will
be omitted.

Lemma 4.1. If f is a relation on a set X and if S C X, then the following
statements hold.

(1) S is confining if and only ifz € S andx—y = y € S.

(2) S is rejecting if and only ify € S andz —y = z € S.

(3) S is backward complete if and only ify € S = 3z € S such that z — y.
(4) S 1is forward complete if and only ift € S = Iy € S such that T — y.

Statement (1) gives the motivation for the term “confining,” since it states
that all forward images of points in S are confined to S. The term “invariant”
is the commonly accepted term in the case that f is a map; it is adopted
here in the more general setting. The term x*-invariant is simply shorthand for
“invariant under f*.” The other terminology will be justified as the theory is
developed.
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Lemma 4.2. If f is a relation on a set X and if S C X, then S is
confining if and only if S C f~1(9).

Proof. If S is confining, then Lemmas 1.5 and 1.6 imply that S C
FYf(S)) € £71(S). On the other hand, if S C f~1(S), then Lemmas 1.1
and 1.5 imply that f(S) C f(f~1(S)) C S, which implies that S is confining
and completes the proof. O

Lemma 4.3. If f is a relation on a set X and if S C X, then S is rejecting
if and only if S¢ if confining.

Proof. If S is rejecting, then, by definition, f*(S) C S. Therefore,
Lemma 1.9 implies that S¢ C f*(S)¢ = f~!(S°¢), which, by Lemma 4.2
implies that S¢ is confining. On the other hand, if S¢ is confining, then
Lemma 4.2 implies that S¢ C f~1(S¢). Therefore, Lemma 1.9 implies that
F*(S) = f~1(8°)° c 8, which is the definition that S is rejecting. ]

The previous lemma justifies the use of the term “rejecting.” When
combined with Lemma 4.1, it states that S is a rejecting set if and only if z € S°¢
and r — y implies that y € S¢. In other words, all forward iterates of points not
in S are rejected by S. The terms “forward complete” and “backward complete”
are justified by the following lemma. It states, for example, that there is a
complete forward orbit through every point in a forward complete set.

Lemma 4.4. If f be a relation on a set X and if S C X, then the following
two statements hold.

(1) S is forward complete if and only if, for every x € S, there exists an orbit
(p,[0,00)) with po = = and p,e0) C S.

(2) S is backward complete if and only if, for every x € S, there exists an orbit
(p,(—00,0]) with po = = and p(_x0,0 C S-

Proof. The proof is given only for statement (1). The proof of statement (2)
is similar.

Assume that, for every z € S, there exists an orbit (p,[0,00)) with pg = z
and pjg,o0) C S. Let y = p;. Then y € § and z — y. Therefore, Lemma 4.1
implies that S is forward complete.

Now assume that S is forward complete, let = € S, and let pg = z. As an
inductive hypothesis, assume that p; has been defined for ¢ € [0,n] such that
(p,[0,n]) is an orbit satisfying ppo») C S. Lemma 4.1 implies the existence of a
y € S such that p, — y. Let p,4+1 = y. Then (p,[0,n+ 1]) is an orbit satisfying
Plo,n+1] C S. Therefore, p; can be defined for all ¢ € [0,00), and the proof is
complete. O

The next lemma states that all of the invariance properties in the above
definition are inherited by iterates. It is followed by a lemma which states that
the image of a confining set under an iterate of the relation is again a confining
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set. The proofs of the all the implications in both lemmas are simple induction
arguments using the definition of f™ and Lemma 1.1. They are omitted.

Lemma 4.5. If f is a relation on a set X, if n is a nonnegative integer,
and if S C X, then each of the following implications holds.

(1) If S is confining for f, then S is confining for f™.

(2) If S is rejecting for f, then S is rejecting for f*.

(3) If S is backward complete for f, then S is backward complete for f".
(4) If S is forward complete for f, then S is forward complete for f™.
(5) If S is invariant for f, then S is invariant for f™.

(6) If S is x-invariant for f, then S is x-invariant for f™.

Lemma 4.6. If f is a relation on a set, if S is confining for f, and if n is
a nonnegative integer, then f™(S) is confining for f.

The next two lemmas will be needed in Section 5. The first is a trivial
observation about confining sets. Its proof is a simple induction argument using
the definition of f”, the definition of “confining,” and Lemma 1.1. The second
lemma states that the intersection of confining sets is confining. Its proof is an
immediate consequence of Lemma 1.4. Both proofs are omitted.

Lemma 4.7. If f is a relation on a set X, if K is confining for f, and if
S C X satisfies f*(S) C K for some n > 0, then f*(S) C K for all k > n.

Lemma 4.8. If f is a relation on a set X and if S is a set of subsets of
X such that each S € & is confining for f, then (& is confining for f.

The next series of lemmas concern confining sets and relations restricted
to subsets. They also will be used in later sections. The first gives a sufficient
condition for a set to be confining for a restriction. It is a simple consequence
of Lemma 1.16.

Lemma 4.9. If f is a relation on a set X, if Y C X, and if S is confining
for f, then SNY is confining for f| .

The next two lemmas give sufficient conditions for a relation and its
restriction to agree on a subset. Both lemmas follow immediately from
Lemma 1.16.

Lemma 4.10. If f is a relation on a set X, if SCY C X, and if S is
confining for f, then f|, (S) = f(S).

Lemma 4.11. If f is a relation on a set X, if SCY C X, and if Y is
confining for f, then f|, (S) = f(9).

The next lemma gives a sufficient condition for equality between an iterate
of a relation and the same iterate of the relation restricted to a subset.
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Lemma 4.12. If f is a relation on a set X, if SCY C X, if S s
confining for f, and if n is a nonnegative integer, then

(Fly)™(8) = £(9).

Proof. The statement is trivial for n = 0. As an inductive hypothesis,
assume that (f|y)*(S) = f¥(S). Note that f¥(S) C Y. Lemma 4.6 implies that
f¥(8) is confining for f, so Lemma 4.10 implies that f|, (f¥(S)) = f(£*(S)).
The definition of iteration, Lemma 1.10, and the inductive hypothesis therefore
imply that

(FIy)*S) = (Fly) ((Fly)*(9)) = fly (F5(8)) = F(F4(9)) = f*+1(9),
which completes the proof. O

"«

The properties “confining,” “rejecting,” “backward complete,” and “forward
complete” are logically independent in the sense that no combination of these
properties implies any other. This independence is shown in the following
examples.

Example 4.13. Let X = {0,1}, let f = {(0,0)}, and let S = X. Then
f(8) = f*(S) = {0} C S, so S is confining and rejecting but neither backward
complete nor forward complete.

Example 4.14. Let X = {0,1}, let f = {(0,0),(0,1),(1,0)}, and let
S = {0}. Then f(S) = f*(S) =X D 8, so S is backward complete and forward
complete but neither confining nor rejecting.

Example 4.15. Let X = {0,1,2}, let f = {(0,0),(0,1),(2,0)}, and let
S ={0,1}. Then f(S) =S and f*(S) = {0,2}. Therefore, S is invariant (hence
confining and backward complete) but neither rejecting nor forward complete.
For the relation f*, S is *-invariant (hence rejecting and forward complete) but
neither confining nor backward complete.

Example 4.16. Let X = [-2,2], let f = {(z,y) € X x X : y = 22 -2},
and let S = {2}. Then f(S) = S and f*(S) = {-2,2} D S. Therefore, S is
invariant (hence confining and backward complete) and forward complete but
not rejecting. For the relation f*, S is #-invariant (hence rejecting and forward
complete) and backward complete but not confining.

Example 4.17. Let X and f be as in the previous example, but take
S =1[0,2]. Then f(S) = X D S and f*(S) = [-2,—V2]U[V2,2]. Therefore, S
is backward complete but neither confining nor rejecting nor forward complete.
For the relation f*, S is forward complete but neither confining nor rejecting
nor backward complete.

Example 4.18. Let X = [0,1], let f = {(z,y) € X x X : y = azx}, where
0<a<1,andlet S=X. Then f(S)=[0,a] C S and f*(S) = S. Therefore,
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S is confining and *-invariant (hence rejecting and forward complete) but not
backward complete. For the relation f*, S is rejecting and invariant (hence
confining and backward complete) but not forward complete.

Example 4.19. Let X, a, and f be as in the previous example, but take
S = [b,1], where a < b < 1. Then f(S) = [ab,a] and f*(S) = @ C S. Therefore,
S is rejecting but neither confining nor backward complete nor forward complete.
For the relation f*, S is confining but neither rejecting nor backward complete
nor forward complete.

Example 4.20. Let X = [0,1],let f = {(z,y) € X x X : y = x2}, and let
S = [0,a], where 0 < a < 1. Then f(S) = [0,a?] C S and f*(S) = [0,/a] D
S. Therefore, S is confining and forward complete but neither rejecting nor
backward complete. For the relation f*, S is rejecting and backward complete
but neither confining nor forward complete.

Example 4.21. Let X and f be as in the previous example, but take
S = {0}. Then f(S) = f*(S) = S, so S is confining, rejecting, backward
complete, and forward complete.

Example 4.22. Let X and f be as in Example 4.20, but take S = [a,b],
where 0 < a < b < 1. Then f(S) = [a2,b?] and f*(S) = [v/a,V/b], s0 S is neither
confining, rejecting, backward complete, nor forward complete.

The remainder of this section is a digression to explore some distinctions
between maps and relations.

Lemma 4.23. If f is a map on a set X and if S C X, then S is confining
if and only if S is forward complete.

Proof. Lemma 1.8 implies that f*(S) = f~1(S). Therefore, Lemma 4.2
implies that S is confining if and only if § C f~1(S) = f*(S), which is the
definition that S is forward complete. O

The equivalence between a confining set and a forward complete set is the
only dependence among the four properties. Examples 4.16 through 4.22 show
that the three properties “confining,” “rejecting,” and “backward complete”
are logically independent for maps. Note that the relation f in each of these
examples is a map. Furthermore, the relation f* in Example 4.20 is also a map.

For surjective maps, there is an additional implication.

Lemma 4.24. If f is a surjective map on a set X and if S C X 1is
rejecting, then S is backward complete.

Proof. If S is rejecting, then f=1(S) = f*(S) C S. Since f is surjective,
S = f(f~1(S)) c f(S), so S is backward complete. O
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Examples 4.16, 4.17, and 4.20 through 4.22 show that Lemma 4.24 is the
only additional implication for surjective maps. Note that the relation f in
each of these examples is a surjective map. Furthermore, the relation f* in
Example 4.20 is also a surjective map.

If S is *-invariant, then it is both rejecting and forward complete.
Lemma 4.23 implies that, if f is a map, then S is confining, while Lemma 4.24
implies that, if f is a surjective map, then S is also backward complete. The
following corollary summarizes these statements.

Corollary 4.25. If f is a surjective map on a set X and if S C X is
x-tnvariant, then S is invariant.

A set which is both invariant and *-invariant is sometimes called “completely
invariant” [10]. The corollary states that, for surjective maps, a *-invariant set
is always completely invariant. Example 4.16 shows that the converse of the
corollary is not true.

For injective maps, the converse of the implication of Lemma 4.24 holds.

Lemma 4.26. If f is an injective map on a set X and if S C X 1is
backward complete, then S is rejecting.

Proof. If S is backward complete, then f(S) D S. Since f is injective,
S = f71f(S)) = f*(£(S)) D f*(S). Therefore, S is rejecting. O

Examples 4.18 through 4.22 show that Lemma 4.26 is the only additional
implication for injective maps. Note that the relation f in each of these examples
is an injective map. Note also that the relation f* in Example 4.20 is also an
injective map.

For bijective maps, Lemmas 4.24 and 4.26 imply that a set S is rejecting if
and only if it is backward complete. Lemma 4.23 therefore implies that there
are only two independent properties for bijective maps, confining and rejecting.
Examples 4.20 through 4.22 show that these two properties are indeed logically
independent.

5. OMEGA LIMIT SETS FOR SETS

Throughout this section, indeed, throughout the remainder of this paper,
X will denote a compact Hausdorff space, and f will denote a closed relation on
X.

The omega limit set of an orbit for a flow or a map is an important tool in
the study of dynamical systems. A closely related concept is that of the omega
limit set of a set, introduced by Conley for flows on metric spaces [6]. Both
concepts are useful in the study of relations. Omega limits sets for orbits will be
discussed in the next section; this section is concerned with the generalization
of Conley’s definition to relations and with the development of properties for
the omega limit set of a set.
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Conley’s definition has at least two generalizations to relations. The first is
the following direct analogue.

Definition. The strict omega limit set of a set S under the relation f is

the set
o(8;0) = U r#.

n>0k>n

A property used extensively by Conley, and one which will be useful in
the remainder of this paper, is that the omega limit set of a set is invariant.
Unfortunately, this property does not hold for the strict omega limit set, even
if S is a single point, and even if the relation f is the inverse of a continuous
surjective map on X, as seen below in Example 5.2. It is convenient, therefore,
to introduce the following definition of omega limit set. Let

A(S;f) ={K : K is a closed confining set satisfying
f™(S) C K for some n >0}.

Definition. The omega limit set of a set S under the relation f is the set
w(S; f) = &(S; ).

It will be seen below in Theorem 5.9 that the omega limit set of a set is
indeed invariant. Furthermore, as shown in Theorem 5.3, the omega limit set
and the strict omega limit set agree if f is a map. Thus both are generalizations
of Conley’s definition.

Since the particular relation often will be clear from the context, it is
sometimes convenient to drop the explicit reference to it. Thus, w(S) will
denote the omega limit set of S, &(S) will denote the strict omega limit set of
S, and R(S) will denote the set K(S;f). Also, it is often inconsequential to
distinguish between a point and the set consisting of that point. In particular,
the following notation will be used, as will similar notations.

w(z) = w({z}).
The strict omega limit set is always a subset of the omega limit set, as

shown in the following theorem. The opposite inclusion is not always true, as
shown below in Example 5.2.

Theorem 5.1. If f is a closed relation on a compact Hausdorff space X
and if S C X, then @(S) C w(S).

Proof. It will be shown that, for every K € £(S), there exist s a nonnegative
integer n such that

(5-1) U %) c k.
k>n

Lemma, 2.6 will then imply the result.
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Let K € R(S). By definition, there is a nonnegative integer n such that
f*(S) ¢ K. Since K is confining, Lemma 4.7 implies that f*(S) C K, for
every k > n. Therefore, |J,>, f¥(S) C K, which, since K is closed, implies
inclusion (5-1) and completes the proof. O

Example 5.2. Let X = [—2,4+00], i.e., X is the one-point compactification
of the interval [—2,400). Consider the following continuous surjective map on
X z2 -2, ifxe€[-2,+00)

p(r) = { oo
+o00, ifx =400
Consider ¢ as a relation, let f = ¢*, and let 2 < € < 00. It is well-known that
the set of pre-images of the point 0 under the map ¢ is dense in [—2,2] [5].
Since 0 € f2(2), it follows that the minimal closed confining set for f containing
the point 2 is [—2,2]. Therefore, w(¢; f) = [-2,2] # {2} = @(&; f), which shows
that the strict omega limit set is not always identical to the omega limit set.
Furthermore, {2} is not invariant, which shows that the strict omega limit set is
not necessarily invariant.

The relation f also provides an example which shows that the closure of a

confining set is not necessarily confining. If S = (2,£], then f(S) = (2,V/€+2] C

S, but £(8) = [2,vVE+2|U{-2} ¢ 5.

The next theorem shows that the omega limit set and the strict omega limit
set agree if the relation is a map.

Theorem 5.3. If g is a continuous map on a compact Hausdorff space X
and if S C X, then

w(S;9) = &(S;9)
Proof. For each n > 0, let
G, = ng(S) and &={G,:n>0}.
k>n
Note that g(G,) = Gp41 C Gy. Therefore,
(5-2) 9(Gn) C 9(Gn) C Gy,
which states tlia_t_G_n is confining. Furthermore, since G, is closed and since
g9"(S) C G, C Gy, it follows that G,, € R(S;g). Therefore, & C K(S;g), which,
with Lemma 2.6, implies that
w(S;9) = NAR(S;9) C NG =a(S;9).

The opposite inclusion was proved in Theorem 5.1, so the proof is complete. O

The previous proof fails at step (5-2) for closed relations because the
inclusion g(_g) c 9(8S) is true for maps but not for relations. Indeed, the lemma
itself fails for closed relations, as was shown in Example 5.2.

The next theorem shows that, for a closed confining set, the omega limit
set and the strict omega limit set agree and are given by a simple formula.
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Theorem 5.4. If G is a closed confining set for a closed relation on a
compact Hausdorff space, then

G(G) =w(@) =) ().

n>0
Proof. Theorem 5.1 implies that
(@) C w(@).

For each n > 0, Lemma 4.6 implies that f”(G) is confining, while Theorem 2.1
implies that f(G) is closed. Since f™(G) is a subset of itself, f*(G) € &(G).
Lemma 2.6 therefore implies that

w(G) =NR(G) c [ /().

n>0

The inclusion f*(G) C Ugsn, f*(G) is trivial. Therefore,

N @) c U e =a@),

n>0 n>0k>n

and the proof is complete. O

The following lemma establishes some properties of the set &(S).

Lemma 5.5. If S is a subset of X, then the following properties hold.

(1) S'c S = R(S) Cc &(9).

(2) g f = R(S:f) C R(539).

(3) R(£(9)) = &(S5).

(4) K € 8(S) = f(K) € R(S).

(5) If ¥ is a finite subset of R(S), then F € R(S).

Proof. Let S’ C S, and let K € R(S). Then K is a closed confining set
satisfying f*(S) C K for some n > 0. Lemma 1.1 implies that f™(S’) C f*(S) C
K, which implies that K € £(S’) and establishes property (1).

Now assume that g C f, and let K € R(S;f). Again, K is a closed
confining set for f satisfying f™(S) C K for some n > 0. Lemma 1.1 implies
that g(K) C f(K) C K, while the same lemma, together with Lemma 3.3,
implies that ¢"(S) C f*(S) C K. Therefore, K € £(S;g), which establishes
property (2).

Now let K € R(f(S)). Then K is a closed confining set satisfying
fPTYS) = f*(f(S)) c K for some n > 0. Therefore, K € £(S), which
establishes that

R(£(5)) C R(S).
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Now let K € £(S). Then K is a closed confining set satisfying f*(S) C K.
Since K is confining, it follows that f™(f(S)) = f(f™(S)) C f(K) C K, which
establishes that

R(S) C R(f(9))
and completes the proof of property (3).

Again let K € £(S). Since K is closed, hence compact, Theorem 2.1
implies that f(K) is compact, hence closed. Since K is confining, Lemma 4.6
implies that f(K) is confining. Since f*(S) C K for some n > 0, it follows that
frY(8) = f(f*(S)) C f(K), which implies that f(K) € &(S) and establishes
property (4).

Finally, let § be a finite subset of &(S), and write G = (\§. Since G
is the intersection of closed sets, it is closed. Since G is the intersection of
confining sets, Lemma 4.8 implies that G is confining. For each K € §, there is
a nonnegative integer nx such that f*%(S) C K. Let n = max{ngk : K € §}.
Then Lemmas 3.2 and 4.5 imply that

fr(S) = fr e ("% (S)) C [ (K) C K.

Therefore, f*(S) C (1§ = G, which implies that G € R(S) and establishes
property (5). O

The last property has a corollary which states that an element of K(S) can
be found in an arbitrary neighborhood of w(S).

Corollary 5.6. If S C X and if U is a neighborhood of w(S), then there
exists a K € R(S) such that K C U.

Proof. Lemma 2.8 implies the existence of a finite subset § of K(S) such
that (1§ C U. Property (5) of Lemma 5.5 implies that K = (§ € &(S). O

The next lemma establishes some properties of the set £(S) for restrictions
of relations. These properties will be exploited below in the proofs of Lemma 5.13
and Theorems 5.14 and 5.15. Note that the ambient space for the relation has
become important.

Lemma 5.7. IfY is a closed subset of X and if S C Y, then the following
properties hold.

(1) &(S; fly) C &(S;fN(Y xY)).
2) K € &(S;fN(Y xY)) = KNY € &(S; fly)-

Proof. Let K € R(S; fly). Then K is a closed confining set for fl|y
satisfying ( f|,-)™(S) C K for some n > 0. Since K is closed in Y, which is itself
closed in X, it follows that K is closed in X. Lemma 1.13 implies that K is
confining for f N (Y x Y'), while Lemma 3.4 implies that (f N (Y x Y))*(S) C K.
Therefore, K € R(S;fN(Y xY)), and property (1) is established.

Now let K € &(S;fN(Y xY)). Then K is a closed confining set for
FN(Y xY) satisfying (fN(Y xY))"(S) C K for some n > 0. Since K is
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closed in X, KNY is closed in Y. Since K is confining for fN(Y xY),
Lemmas 4.9 and 1.14 imply that KNY is confining for (fN(Y xY))|y = fly-
Lemma 3.4 implies that (f|,)"(S) C K, which, since (f|y)"(S) C Y, implies
that (f]y)™(S) € KNY. Therefore, KNY € A(S; f|y), which establishes
property (2) and completes the proof. 0

The next lemma states that the image of S under sufficiently high iterates
of f can be found in any neighborhood of w(S).

Lemma 5.8. If S C X and if U is a neighborhood of w(S), then there
exists a nonnegative integer n such that f*(S) C U for all k > n.

Proof. Corollary 5.6 implies the existence of a K € K(S) such that K C U.
The definition of K(9) implies the existence of an n > 0 such that f™(S) C K.
Lemma 4.7 implies that, for k > n, f*¥(S)c K c U. O

The next theorem, which establishes that the omega limit set of a set is a
closed invariant set, is one of the fundamental results of this section.

Theorem 5.9. If f is a closed relation on a compact Hausdorff space X
and if S C X, then w(S) is a closed invariant set.

Proof. Since w(S) is the intersection of closed subsets, it is closed. Since
it is the intersection of confining sets, Lemma 4.8 implies that it is confining.
There remains only to show that w(S) is backward complete.

It will be shown that

(5-3) N(f(w(8))) € Nw(S)).
Lemmas 2.12 and 2.6 will then imply that
w(8) = NMw(S)) € NN(f(w(S))) = f(w(S))

and hence that w(S) is backward complete.

Let U € M(f(w(S))). Theorem 2.3 implies the existence of a neighborhood
V of w(S) such that f(V) C U°. Corollary 5.6 implies the existence of
a K € R(S) such that K C V. Property (4) of Lemma 5.5 implies that
f(K) € A(S). Therefore, w(S) C f(K) C f(V) c U°, which implies that
U € MYw(9)), establishes inclusion (5-3), and completes the proof. m|

The next two results are simple, but extremely useful. They are combined
into one theorem, which states that the omega limit set is monotone in its
arguments.

Theorem 5.10. If f is a closed relation on a compact Hausdorff space X
and if S C X, then the following properties hold.

(1) c S = w(9;f) Ccw(S;f).
(2) g f = w(S;9) Cw(S;f).
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Proof. Assume that S’ C S and that ¢ C f. Properties (1) and (2) of
Lemma 5.5 state that &(S; f) C &(S’; f) and that R(S;g) C &(S;f). Lemma 2.6
therefore implies that

w(S'sf) = NR(S; f) CNR(S; ) =w(S;f)  and
w(S;9) = NK(S;9) C NR(S; f) = w(S;f),
which completes the proof. O

The omega limit set of a set S depends only on the ultimate behavior of
the image of S under high iterates of the relation. The next theorem establishes
that the omega limit set of S is the same as the omega limit set of the image of
S under any iterate of the relation.

Theorem 5.11. If f is a relation on a compact Hausdorff space X, if
S C X, and if n is a nonegative integer, then

w(f*(8)) = w(8).
Proof. Property (3) of Lemma 5.5 implies that £(f(S)) = £(S), which

implies that
w(f(5)) = NA(S(S)) = NA(S) = w(S).

A simple induction argument completes the proof. O

The next theorem gathers together some elementary results.

Theorem 5.12. If f is a closed relation on a compact Hausdorff space X
and if S is a subset of X, then the following statements hold.

(1) If S is a closed confining set, then w(S) C S.
(2) If S is a backward complete set, then w(S) O S.
(3) If S is a closed invariant set, then w(S) = S.
(4) ww(S)) =w(S).

Proof. If S is a closed confining set, then f*(S) C S for n = 0, s0 S C R(S).
Therefore, w(S) C S, which establishes statement (1).

Now assume that S is backward complete. Lemma 4.5 implies that
S C f*(9), for all n > 0. Therefore, S C K, for every K € £K(S), which implies
that S C A(S) = w(S) and establishes statement (2).

Statement (3) follows immediately from statements (1) and (2) and the
definition of invariant, while statement (4) is a consequence of statement (3)
and Theorem 5.9. O

The final results of this section concern omega limit sets for relations
restricted to subsets. The next lemma is simple, but it is not as trivial as it
appears, since each half of the equality lives in a different space.
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Lemma 5.13. IfY is a closed subset of X and if S CY, then
w(S; fly) =w(S;fN(Y xY)).

Proof. Statement (1) of Lemma 2.6, combined with inclusion (1) of
Lemma 5.7, implies that

w(S;fN(Y xY)) Cw(S; fly),

while statement (2) of Lemma 2.6, combined with inclusion (2) of Lemma 5.7,
implies that
w(S; fly) Cw(S;fN(Y xY)),

and the proof is complete. O

The next theorem states that the omega limit set for a restricted relation is
always a subset of the omega limit set for the relation.

Theorem 5.14. If f is a closed relation on a compact Hausdorff space X,
if Y is a closed subset of X, and if S C Y, then

w(S; fly) C w(S;f).
Proof. Lemma 5.13 and Property (2) of Theorem 5.10 imply that
w(S; fly) =w(S;FN(Y xY)) Cw(S;f),
which completes the proof. ]

The final theorem states that equality is achieved in the previous theorem
if S is a closed confining set.

Theorem 5.15. If f is a closed relation on a compact Hausdorff space, if
K is a closed confining set for f, and if Y is a closed set satisfying K C Y, then

w(K; fly) = w(K; f)-

Proof. Lemma 4.9 implies that K is confining for f|,,. Since K is a closed
subset of the ambient space, it is also a closed subset of Y. Theorem 5.4 and
Lemma, 4.12 therefore imply that

w(K; fly) = [ (fly)"(K) = ] fM(K) = w(K; f),

n>0 n>0

and the proof is complete. O

This section ends with the definition of the alpha limit set of a set, which
is simply the omega limit set for the transpose relation.
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Definition. The alpha limit set of a set S for the relation f is the set
w*(S; f) = w(S; f).

As above, it is often convenient to drop the explicit reference to the relation
and to denote the alpha limit set of a set .S simply by w*(S). Of course, all the
previous theorems have analogs for the alpha limit set. For example, for a set
S, w*(S) is a closed *-invariant set.

6. OMEGA LiMIT SETS FOR ORBITS

The omega limit set of an orbit of a relation is defined in exactly the same
way as for maps; the omega limit set of an orbit is the set of limit points of the
forward part of the orbit. The alpha limit set of an orbit is similar.

Definition. If (p,I) is an orbit, then the omega limit set of (p,I) is the set

w((p,1)) = () Pleoo);
kez

while the alpha limit set of (p,I) is the set

w*((p,1)) = ) Peoori-
kez

Note that the alpha limit set of an orbit is simply the omega limit set for
the orbit running backward in time, which is an orbit for the transpose relation.

In the preceeding section, the invariance of the omega limit set of a set was
stressed. In this light, it should be noted that the omega limit set of an orbit is
not invariant, as seen below in Example 6.3.

It is also important to recall that a forward orbit through a point does not
necessarily exist. Even if it does exist, it is not necessarily unique. Therefore,
there is an important distinction between the omega limit set of a set consisting
of a single point and the omega limit set of an orbit through that point. However,
as shown below in Theorem 6.2, the omega limit set of the orbit is a subset of
the omega limit set of the point.

This section is devoted to establishing some elementary properties of the
omega limit set of an orbit. First it is shown that, if an orbit is forward finite,
then its omega limit set is empty, while, if it is forward infinite, then its omega
limit set is nonempty.

Lemma 6.1. If P = (p,I) is an orbit and if K is a closed set, then the
following statements hold.

(1) If I is bounded above, then w(P) = @.
(2) If I is unbounded above, then w(P) is a nonempty compact set.
(3) Ifpr C K, then w(P) C K.
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Proof. If I is bounded above, then pj; o) = @ for sufficiently large k, which
implies that w(P) = @ and establishes statement (1). On the other hand, if I
is unbounded above, then pj; o) # @ for all k. Therefore, P, is a nested
sequence of nonempty compact sets, which implies that w(P) is a nonempty
compact set and establishes statement (2). Finally, if p; C K, then pj o) C K
for all k, which, since K is closed, implies that P[x0) C K for all k. Therefore,
w(P) C K, which establishes statement (3) and completes the proof. O

The next theorem shows that the omega limit set of an orbit is a subset of
the strict omega limit set of any point along the orbit. The opposite inclusion
is not generally true, as is shown in Example 6.3 below.

Theorem 6.2. If (p,I) is an orbit for a closed relation on a compact
Hausdorff space and ifi € I, then

w((p, 1)) C &(p;) C w(ps).

Proof. Let f be a closed relation on a compact Hausdorff space X, let
(p,I) be an orbit for f, and let n be a nonnegative integer. Statement (2)
of Theorem 3.1 implies that ppiic0) C Uj>n fi(p;). Indeed, the same
inclusion holds with closure on both sides. Therefore, w((p,I)) = Nyez Pik,00) C
Uj>nfj(pi)' Since n is a‘rbitrarY7 W((p,I)) - nn>0Uk>nfk(S) = d}(pi), which
establishes the first inclusion. The second inclusion is an immediate consequence
of Theorem 5.1, and the proof is complete. O

Example 6.3. Consider the surjective map ¢ defined in Example 5.2, and,
as before, let f = ¢*. Let (p,Z) be the orbit for f defined by p; = 2, for all <.
Then w((p,Z)) = {2} # [-2,2] = &(2; f), which shows that the omega limit set
of an orbit is not always identical to the strict omega limit set of a point on that
orbit. Furthermore, {2} is not invariant, which shows that the omega limit set
of an orbit is not necessarily invariant.

Although the omega limit set of an orbit is not necessarily invariant, it is
always both backward and forward complete.

Theorem 6.4. If P is an orbit for a closed relation on a compact Hausdorff
space, then w(P) is both backward complete and forward complete.

Proof. Let f be a closed relation on a compact Hausdorff space X, and
let P = (p,I) be an orbit for f. If I is bounded above, then the conclusion is
trivial, so assume that I is unbounded above. For i € I, let

9i = U{(pk,pk+l)}a and let 9= nE
k>i iel
Note that, since {(pk,pr+1)} C f forall k € I, g; C f for all i € I. Since f is
closed, it follows that g C f. Note also that

T19i = Pli,co) and  T2gi = P[i+1,00)-
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Since X is compact, it follows that

T19i = Pli,co) and  m2g; = Plit1,00)-

Since g; is a nested sequence of compact sets and since 7; and 72 are continuous,
it follows that

mg =T ﬂm= ﬂmE: nm:mP) and that

i€l i€l i€l
Tog = T2 ﬂE = nﬂzﬁ = ﬂp[z’+1,oo) = w(P).
i€l i€l i€l

Therefore, g(w(P)) = g*(w(P)) = w(P). Since g C f, Lemma 1.1 implies that

w(P) = g(w(P)) C f(w(P)) and that
w(P) = g*(w(P)) C f*(w(P)),

which shows that w(P) is both backward complete and forward complete. O

This section ends with two results about omega limit sets for forward
complete sets. The first is that the omega limit set of any point in a closed
forward complete set K has a nonempty intersection with K.

Lemma 6.5. If K is closed and forward complete and if x € K, then
w(z)NK # 0.

Proof. Since K is forward complete, Lemma 4.4 implies the existence of
an orbit P = (p,[0,00)) such that po = = and py,oc) C K. Lemma 6.1 implies
that w(P) is nonempty and that w(P) C K. Since Theorem 6.2 implies that
w(P) C w(x), it follows that w(z)N K # @, and the proof is complete. ]

The previous lemma has a corollary, which states that the omega limit set
of a nonempty closed forward complete set is itself nonempty.

Corollary 6.6. If K is a nonempty closed forward complete set, then
w(K) # 0.

Proof. Let x € K. Then Lemma 6.5 implies that @ # w(z)NK C
w(K)N K, which implies that w(K) # @. a

7. ATTRACTORS

Although the concept of attraction is widely used, there is little agreement
on its exact definition. For a survey of the concept and for a good list of
references, the reader should consult Milnor’s paper [16]. The treatment of
attractors presented here is analogous to that developed by Conley [6] for flows,
that is, an attractor is an invariant set which is the omega limit set of a
neighborhood of itself.
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Definition. A set A is called an attractor for f if there exists a
neighborhood U of A such that

wlU)=A4

Theorem 5.9 immediately implies that an attractor is a closed invariant set.

Lemma 7.1. If A is an attractor, then A is a closed invariant set.

An important property of an attractor is that it can be surrounded by a
neighborhood whose image lies strictly inside itself. Such a neighborhood will
be called an “attractor block” in this presentation, following terminology used
by Conley and Easton [9].

Definition. A set B is called an attractor block for f if
f(B) c B°.

The following three theorems state the main results of this section. The
proofs are given below, as the appropriate machinery is developed. The proof
of Theorem 7.2 follows Lemma 7.6, that of Theorem 7.3 follows Lemma 7.12,
while that of Theorem 7.4 follows Lemma 7.13.

Theorem 7.2. If f is a closed relation on a compact Hausdorff space and
if B is an attractor block for f, then B is a neighborhood of w(B) and, hence,
w(B) is an attractor for f.

Theorem 7.3. If f is a closed relation on a compact Hausdorff space, if A
is an attractor for f, and if V is a neighborhood of A, then there exists a closed
attractor block B for f such that B CV and w(B) = A.

Theorem 7.4. If f is a closed relation on a compact Hausdorff space, if
A is an attractor for f, and if A’ is an attractor for f|,, then A’ is an attractor

for f.

Suppose that A is an attractor, that B is an attractor block, and that
A = w(B). Then A will be called the attractor associated with B, while B
will be called an attractor block associated with A. Theorem 7.2 states that
an attractor block always has an associated attractor; indeed, the associated
attractor is unique. Theorem 7.3 states that an attractor always has an
associated attractor block in any neighborhood. Note that the attractor block
associated with a given attractor usually will not be unique.

Some authors use the attractor block to define the attractor [11]. In view
of Theorems 7.2 and 7.3, this formulation is equivalent to the definition given
above.

The following corollary is a simple restatement of Theorem 7.2. It will be
used in later sections.
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Corollary 7.5. If A is an attractor and if B is an attractor block associated
with A, then B is a neighborhood of A.

The next lemma develops some elementary properties of attractor blocks.

Lemma 7.6. If B is an attractor block, then the following statements are
true.

(1) B is a confining set.
(2) B° and B are attractor blocks.
(3) w(B°) =w(B) =w(B) C B.

Proof. Statement (1) follows from Lemma 1.1, since
f(B) c f(B) c B° C B.
Statement (2) follows from the same lemma, since
f(B°) c f(B)Cc B°=(B°)° and
f(B)=fB)c B CcB.
Statements (1) and (2) imply that B is confining. Since B is also closed,
Theorem 5.12 implies that w(B) C B. Theorem 5.10 implies that w(B°) C

w(B) C w(B). Theorems 5.11 and 5.10 imply that w(B) = w(f(B)) C w(B°),
which establishes statement (3) and completes the proof. ]

Proof of Theorem 7.2. It suffices to show that w(B) C B°. Theorem 5.9
implies that w(B) is invariant. This invariance, together with statement 3)
of Lemma 7.6, implies that w(B) = f(w(B)) C f(B) C B°, which completes the
proof. O

An attractor block can be characterized by the property that the closure
of the Cartesian product of itself with its complement does not intersect the
relation f.

Lemma 7.7. B is an attractor block for f if and only if f N (B x B°) = 0.

Proof. Lemma 1.3 implies that B is an attractor block if and only if
fN(Bx(B°)°) = @. Since (B°)¢ = B¢, the proof is complete. O

The symmetry between a relation and its transpose implies that a set is
an attractor block for a relation if and only if the complement of the set is an
attractor block for the transpose of the relation. This fact will be used in a later
section.

Corollary 7.8. B is an attractor block for f if and only if B® is an
attractor block for f*.
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Proof. According to the preceeding lemma, f is an attractor block for f if
and only if f N (B x B¢) = @. This statement is equivalent to f* N (B¢ x B) = 0.
Since B = (B¢)¢, the preceeding lemma implies that the last statement is
equivalent to the statement that B¢ is an attractor block for f*. O

The next lemma is elementary, but it provides a useful tool for the
construction of attractor blocks. It states that a confining set for a neighborhood
of a relation is an attractor block for the relation. It is the first time in this
paper that essential use is made of the fact that a neighborhood of a relation is
itself a relation.

Lemma 7.9. If g is a closed neighborhood of f and if B is confining for
g, then B is an attractor block for f.

Proof. Since B is confining for g, Lemma 1.3 implies that gN (B x B°)
Since g is a neighborhood of f, it follows that f N (B x B¢) = fN(B x B¢) =
Therefore, Lemma 7.7 implies that B is an attractor block for f.

Q.
O

Example 5.2 shows that the closure of a confining set for f may not be
confining for f. However, the following corollary shows that, if a set is confining
for a closed neighborhood of f, then its closure is confining for f.

Corollary 7.10. If g is a closed neighborhood of f and if B is confining
for g, then B is confining for f.

Proof. Lemma 7.9 implies that B is an attractor block for f. Lemma 7.6
implies that B is also an attractor block for f and hence that B is confining for

f. ml

The following lemma shows that the definition of attractor is a local
condition in the sense that a neighborhood W satisfying w(W) = A exists
arbitrarily close to A. It also shows that the neighborhood W can be chosen to
be closed.

Lemma 7.11. If A is an attractor and if V is a neighborhood of A, then
there exists a closed neighborhood W of A such that W C V and w(W) = A.

Proof. Since A is an attractor, there exists a neighborhood U of A such
that w(U) = A. Corollary 2.10 implies the existence of a closed neighborhood
W of A such that W ¢ VNU. Theorem 5.10 and statement (3) of Theorem 5.12
imply that A = w(A) C w(W) C w(U) = A, which completes the proof. o

The next lemma is the key to the proof of Theorem 7.3. It states that, if A
is an attractor for a relation f and if g is a small neighborhood of f, then the
omega limit set of A under the relation g is close to the omega limit set of A
under f. Since w(A;g) is an attractor block for f, the proof of the existence of
an attractor block becomes an almost trivial consequence of the lemma.
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One should contrast the proof of Lemma 7.12 with Hurley’s proof of the
existence of an attractor block in an arbitrary neighborhood of the attractor
[11]. Although his definitions and motivation are different, his proof can be
reformulated to provide an alternate proof of this lemma.

Lemma 7.12. If A is an attractor for f and if V is a neighborhood of A,
then there exists a closed neighborhood g of f such that w(A;g) C V.

Proof. In view of Lemma 7.11, it suffices to assume that V is closed and
that w(V;f) = A. Lemma 5.8 implies the existence of a positive integer m such
that f™(V) Cc Ve°.

Since A is invariant, f*(A) = A C V°, for all k. Therefore, Lemma 3.7,
applied m + 1 times, implies the existence of a closed neighborhood h of f such
that

R™(V) C V° and h*¥(A) C V°, for 0<k<m-—1.
As an inductive hypothesis, assume that h*(A) C V°, for 0 < k < n— 1, where
n > m. Then Lemmas 3.2 and 1.1 imply that
h*(A) = A™(A"™(A)) c A™(V°) Cc h™(V) C V°,
which, by induction, establishes that

(7-1) h®(A) cV°® forn>0.
Now let
K = (A).
n>0

Lemma 1.4 implies that K is confining for h, since h(K) = U, >oh" " (4) C K.
Since h° is a neighborhood of f, Corollary 2.10 implies the existence of a closed
neighborhood g of f satisfying ¢ C h°. Therefore, h is a neighborhood of
g, which, in turn, is a neighborhood of f. Corollary 7.10 implies that K is
confining for g. Inclusion (7-1) implies that K C V°. Since V is closed, K C V.
By definition of K, A ¢ K ¢ K. Since K is a closed confining set for g,
Theorems 5.10 and 5.12 imply that w(4;g) C w(K;g) C K C V, and the proof
is complete. O

Proof of Theorem 7.3. In view of Lemma 7.11, it suffices to assume that V is
closed and that w(V;f) = A. Lemma 7.12 implies the existence of a closed
neighborhood g of f such that w(A4;g) C V. Let

(7-2) B=w(4;g9)CV.

Since w(A;g) is invariant under g, B is confining for g. Lemma 7.9 implies that
B is an attractor block for f, while Theorem 5.9 implies that B is closed. Since
A is invariant for f, Lemma 1.1 implies that g(4) D f(A) = A and hence that
A is backward complete for g. Statement (2) of Theorem 5.12 therefore implies
that w(A4;g) D A, which, combined with inclusion (7-2), yields

ACBCYV.
Therefore, A = w(A; f) C w(B;f) Cw(V;f) = A, and the proof is complete. O
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The final lemma of this section is another version of the locality of the
property of attraction.

Lemma 7.13. If f is a closed relation on a compact Hausdorff space, if A
s a closed invariant set for f, and if Y is a closed neighborhood of A satisfying

w(Y; fly) C A,
then A is an attractor for f.

Proof. Since A is invariant for f, Y is a neighborhood of f(4), so
Theorem 2.3 implies the existence of a neighborhood V' of A such that f(V) C Y.
Since A is confining for f, Lemma 4.10 implies that f|, (A) = f(4) = A.
Since A is closed in the ambient space, it is a closed subset of Y, so Theorems 5.12
and 5.10 imply that
A=w(4; fly) cw(Y; fly) C A
Therefore, w(Y’; f|,,) = A, which, since Y is trivially a neighborhood of A
in Y, implies that A is an attractor for f|,,. Theorem 7.3 therefore implies
the existence of a closed attractor block B for f|, such that B C VNY and
w(B; fly) = A. Since B C Y and since f(B) C f(V) CY, Lemma 1.13 implies
that
f(B) = f(B)nY = f|,(B) C B,
and hence that B is confining for f. Since B is a closed subset of Y, which is
itself a closed subset of the ambient space, B is closed. Theorem 5.15 therefore
implies that
w(B; f) = w(B; fly) = A.
Since B is a neighborhood of A in Y and since Y is a neighborhood of A in the

ambient space, it follows that B is a neighborhood of A and hence that A is an
attractor for f. O

Proof of Theorem 7.4. Lemma 7.1 implies that A and A’ both are compact,
that A’ is invariant for f|,, and that A is invariant for f. In particular, A is
confining for f, so Lemma 4.11 implies that f(A’) = f|,(A’) = A’, and hence
that A’ is a closed invariant set for f. In view of Lemma 7.13, the proof will be
complete once it is shown that there exists a Y € 9(A4’; X) such that

(7-3) w(Y; fly) C A"

The definition of attractor implies the existence of a U € M(A4;X) and a
V € M(A’; A) such that

wU;f)=A and w(V;f],) =A"
Lemma 2.11 implies the existence of a Y € ﬁ(A’ ; X) such that
(7-4) YcCU,
(7-5) Y'=YNnACV.
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Theorem 5.14 and inclusion (7-4) imply that w(Y; f|,) C w(Y;f) C A, which,
since w(Y; fly) C Y, implies that w(Y; f|y) C Y'. Theorems 5.12 and 5.10
then imply that

(7-6) w(; fly) = ww(Y; fly); fly) Cw’s fly)
Lemma 1.15 implies that

(FIly = (Fldly: = fly:

Since A is confining for f, Lemma 4.9 implies that Y’ is confining for fl, .
Theorems 5.15 and 5.14 therefore imply that

wY'; fly) = w(Y'; fly) Cw(Y'; fl4),

which, together with inclusions (7-5) and (7-6), implies inclusion (7-3) and
completes the proof. O

8. BASINS

The basin of an attractor is the set of all points attracted to it in the sense
that the omega limit set of the point is a subset of the attractor.

Definition. If A is an attractor for a relation f, then its basin is the set
B(4;f) = {z : w(z; f) C A}.

It should be noted that, if z € X satisfies f(z) = @, then w(z;f) = @ and
hence z is in the basin of every attractor.

The set B(A;f) is sometimes called the “basin of attraction” of A. The
relation f is often understood from the context, in which case explicit reference
to it in the notation will be deleted.

B(A) = B(4; f).

The main results of this section are given in the following theorem. It
states that the basin of an attractor A is an open confining set containing A.
Furthermore, the basin has a peculiar invariance property stated precisely as
property (4). As will be shown in the next section, this property is equivalent to
the statement that the complement of the basin is *-invariant. The proof of the
theorem will be given below after the development of some preliminary results.

Theorem 8.1. If A is an attractor for a relation f on a compact Hausdorff
space, then the basin of A satisfies the following properties.

(1) AcCB(A).

(2) B(A) is open.

(3) B(A) is confining.
(4) f71(B(4)) = B(A).
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The first lemma reveals a local uniformity for the number of iterations it
takes to confine the image of a point to a neighborhood of the attractor.

Lemma 8.2. If A is an attractor for f, if v € B(A), and if U is a
neighborhood of A, then there exist a nonnegative integer m and a neighborhood
V of  such that f™(V)CU.

Proof. By definition, w(z) C A. Since U is a neighborhood of w(z),
Lemma 5.8 implies the existence of a nonnegative integer m such that f™(z) C U.
Since {z} is compact, Theorem 2.3 implies the existence of a neighborhood V
of z such that f™(V) c U. o

There is not much difference between a point and a compact set. In
particular, in the present setting, the omega limit set of any compact subset of
the basin is a subset of the attractor. Recall that, even for flows, the statement
is not true for noncompact sets.

Lemma 8.3. If A is an attractor and if K is a compact subset of B(A),
then w(K) C A.

Proof. Let B be an attractor block associated with A. For each z € K,
Lemma 8.2 implies the existence of a nonnegative integer m,, and a neighborhood
Vi of z such that f™=(V,) C B. Since K is compact, there exists a finite set F’
such that |J{V; : z € F} D K. Let m = max{m, : z € F}.

Now let y € K. Choose z € F such that y € V,. Since f™=(y) C f™=(V,) C
B and since B is confining, f™(y) = fm™ ™=(f™=(y)) C fm™<(B) C B.
Therefore, f™(K) C B. Theorem 5.11 implies that w(K) = w(f™(K)) C
w(B) = A, and the proof is complete. |

The next lemma is an immediate consequence of Theorem 5.10 and the
definition of basin. It states that a set whose omega limit set is a subset of A
must lie entirely in the basin of A. The corollary states that, in particular, any
attractor block associated with A must lie in the basin.

Lemma 8.4. If A is an attractor and if S is a set satisfying w(S) C A,
then S C B(A).

Corollary 8.5. If A is an attractor and if B is an attractor block associated
with A, then B C B(A).

Proof of Theorem 8.1. If x € A, then Theorems 5.10 and 5.12 imply that
w(z) C w(A) = A, which implies that z € B(A) and establishes property (1).
Now let z € B(A), and let U be a neighborhood of A satisfying w(U) = A.
Lemma 8.2 implies the existence of a nonnegative integer m and a neighborhood
V of z such that f™(V) C U. Theorem 5.11 implies that w(V) = w(f™(V)) C
w(U) = A. Lemma 8.4 implies that V C B(A), which implies that B(A) is open
and establishes property (2). '
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Again let z € B(A) and assume that x — y. Statement (1-1) implies that
y € f(z). Therefore, Theorems 5.10 and 5.11 imply that w(y) C w(f(z)) =
w(z) C A, which implies that y € B(A). Statement (1) of Lemma 4.1 implies
that B(A) is confining, which establishes property (3).

Now let z € f~1(B(4)). By definition, f(x) C B(A). Since f(z) is compact,
Lemma 8.3 implies that w(f(z)) C A. Therefore, w(x) C A, which implies that
z € B(A) and hence that

F7H(B(4)) C B(A).

Property (3) and Lemma 4.2 imply that
B(4) c f71(B(4)),

which establishes property (4) and completes the proof. a

9. REPELLERS

For flows on compact metric spaces, Conley introduced the notion of a
repeller dual to a given attractor [6]. A repeller is simply an attractor for the
flow followed backward in time, and Conley showed that the complement of
the basin of an attractor is a repeller. These results have direct analogues for
relations.

Definition. A repeller for f is a set R such that R is an attractor for f*.

Definition. If R is a repeller for f, then the basin of R is the set

B*(R; f) = {z: w*(z;f) C R}.

The following lemma states that the basin B*(R;f) of a repeller R for
a relation f is the same as the basin B(R;f*) of R when R is viewed as an
attractor for f*. One is tempted to call B*(R;f) the “basin of repulsion,” but
this name has connotations of a value judgement inappropriate in the present
context.

Lemma 9.1. If A is an attractor for f and if R is a repeller for f, then
the following properties hold.

(1) B*(R; f) = B(R; f*).
(2) B(4;f) = B*(4;f*).

Proof. The definition of the alpha limit set implies that
B*(R; f) = {z:w"(z;f) C R} = {z :w(z;f*) C R} = B(R; f*),

which establishes property (1). Property (2) follows from property (1) and from
the fact that (f*)* = f. ]
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As usual, if the relation f is understood from the context, its explicit
reference will be deleted. Furthermore, it is often clear that the set R is a
repeller, in which case it is convenient to use the same notation for the basin of
a repeller and the basin of an attractor.

B(R) = B*(R) = B*(&; f).

Definition. If A is an attractor for f, then the dual repeller of A for the
relation f is the set
D(4;f) = B(4;f)°.

Definition. If R is a repeller for f, then the dual attractor of R for the
relation f is the set

D*(R; f) = B*(R; f)°.

At this point in the discussion, it is not clear that the dual repeller is a
repeller or that the dual attractor is an attractor. Theorems 9.3 and 9.6 below
will show that this terminology is indeed appropriate, but first some abbreviated
notation will be introduced.

The following lemma is an immediate consequence of Lemma 9.1. It states
that the dual repeller of an attractor A is identical to the dual attractor of A
when A is view as a repeller for the transpose relation.

Lemma 9.2. If A is an attractor for f and if R is a repeller for f, then
the following properties hold.
(1) D*(R:f) = D(R; £*).
(2) D(4;f) =D*(4;f*).

Again, the relation f and the identity of the set in question as an attractor
or a repeller are often understood from the context. In such cases, the notation
will become

A* = D(4;f),
R* =D*(R; f).
The following theorem is the main result of this section. Not only does it

justify the choice of the term “repeller” in the name “dual repeller,” but it also
establishes that the basin of the dual repeller is the complement of the attractor.

Theorem 9.3. If A is an attractor for a closed relation on a compact
Hausdorff space, then A* is a repeller, and B(A*) = A°.

The proof is based on the next two lemmas and will be given after the
proofs of the lemmas. The first lemma states that the dual repeller is a closed
*-invariant set.

Lemma 9.4. If A is an attractor, then A* is closed and x-invariant.
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Proof. Theorem 8.1 implies that B(A) is open, which implies that A* is
closed. Lemma 1.9 and property (4) of Theorem 8.1 imply that f*(A*) =
F*(B(A)°) = f~1(B(A))° =B(A)° = A*. m

It was shown in Corollary 7.8 that the complement of an attractor block
B for a relation is an attractor block for the transpose relation. If A is the
attractor associated with B, then not only is the dual repeller of A an attractor
for the transpose, but it is the particular attractor associated with the attractor
block B€.

Lemma 9.5. If A is an attractor for f and if B is an attractor block
associated with A, then B is an attractor block for f*, and w*(B°¢) = A*.

Proof. Corollary 7.8 and Theorem 7.2 imply that B¢ is an attractor block
for f* with associated attractor C = w(B¢; f*) = w*(B% f) = w*(B°).

Let z € C. Since C is a compact invariant set for f*, it is *-invariant
for f, hence forward complete for f. Since C is closed and forward complete,
Lemma 6.5 implies that w(z) NC # @. Corollary 7.5 implies that A C B and
C C B¢. Therefore, C C A°, which implies that w(z)N A° # @ and hence that
w(z) ¢ A. It follows that = ¢ B(A) and hence that z € B(4)¢ = A*. Therefore,

w*(B¢) C A*.

Corollary 8.5 implies that B C B(A4), which implies that A* = B(A)¢ C B°.
Statement (3) of Theorem 5.12 and Lemma 9.4 imply that A* = w(A4*;f*) C
w(BC f*) = w*(B®). Therefore,

A* C w*(B°),
and the proof is complete. O

Proof of Theorem 9.3. Lemma, 9.5 and Theorem 7.2 imply that A* is an attractor
for f*, which implies that A* is a repeller for f.

Let z € A°. Since {z}° is a neighborhood of A, Theorem 7.3 implies
the existence of an attractor block B associated with A such that z ¢ B.
Lemma 9.5 implies that B¢ is an attractor block for f* with associated attractor
A*. Corollary 8.5 implies that B¢ C B(A*), which, since z € B¢, implies that
x € B(A*). Therefore,

A° C B(A4Y).

Now let z € A. Lemma 7.1 implies that A is a compact invariant set for f,
hence it is a closed set which is forward complete for f*. Lemma 6.5 therefore
implies that w(z; f*) N A # @, which implies that w*(z) N A # @, which implies
that w*(z) ¢ A°. Since A C B(A), it follows that A* C A®, which implies that
w*(z) ¢ A*. Therefore, z ¢ B(A*), which implies that

A C B(A%)°
and completes the proof. O

The next theorem is the analogue of Theorem 9.3 for repellers. It shows
the symmetry between attractors and repellers.
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Theorem 9.6. If R is a repeller for a closed relation on a compact
Hausdorff space, then R* is an attractor, and B(R*) = R°.

Proof. If R is a repeller for f, then R is an attractor for f*, so Theorem 9.3
implies that S = D(R;f*) is a repeller for f* and that B*(S;f*) = R°.
Lemma 9.2 implies that S = D*(R;f) = R*, while Lemma 9.1 implies that
B(S;f) = B*(S;f*) = R¢. Therefore, R* = S is an attractor for f, and
B(R*) = R°. o

The next theorem justifies the term “dual” in the names “dual attractor”
and “dual repeller.”

Theorem 9.7. If A is an attractor and R is a repeller for a closed relation
on a compact Hausdorff space, then (A*)* = A and (R*)* = R.

Proof. Let A be an attractor for f. Theorem 9.3 implies that A* is a repeller
for f and that B*(A*; f) = A°. Therefore, A = B*(A*; f)¢ = D*(A*;f) = (4*)*.

Now let R be a repeller for f. Theorem 9.6 implies that R* is an attractor
for f and that B(R*;f) = R¢. Therefore, R = B(R*; f)¢ = D(R*; f) = (R*)*.
O

Note that the entire space X is always an attractor block for a relation f.
Therefore, w(X) is always an attractor. Its basin is the entire space, and its
dual repeller is the empty set. Similarly, w*(X) is always a repeller, and its dual
attractor is the empty set.

This section ends with four examples. The first three examples are actually
maps on a larger space. However, when restricted to the space in question,
they fail to be defined everywhere. Nonetheless, they are relations, and they
illustrate some of the ideas in this section. The fourth example is a simple
illustration of the symmetry between attractors and repellers. It is, in some
sense, the canonical example of an attractor and its dual repeller.

Example 9.8. Let X be the real interval [0,1], let ¢ > 0, and let the
relation f on X be defined as

f={@yeXxX:y=c+c}.

Note that f®(X) = [ne,nc+1]N[0,1] and hence that f*(X) =@ for n > 1/c.
Therefore, w(X) = @, so @ is the attractor dual to the repeller @.

Example 9.9. Let X be the real interval [—1,1], let @ > 1, and let the
relation f on X be defined as

f={(@y)eXxX:y=az}

Note that f(X) = X and hence that w(X) = X. Therefore, X is the
attractor dual to the repeller @.
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Note also that (f*)"(X) = [-a~™,a™"] and hence that w*(X) = {0}.
Therefore, {0} is the repeller dual to the attractor @.
Example 9.10. Let X =[-1,1] x[-1,1],let 0 < B < 1 < e, and let
f=A{(z,y) e Xx X :y= Az},

a 0
asfr o]
Note that f™(X) = {(z1,22) € X : |z2| < "} and hence that w(X) =
{(z1,z2) € X : 3 = 0}. Therefore, the horizontal axis A is the attractor dual to

the repeller @. Similarly, the vertical axis R is the repeller dual to the attractor
.

where

Note also that A is invariant and rejecting, but not forward complete, and
that R is *-invariant and confining, but not backward complete.

The previous example illustrates a more general phenomena. If one considers
the relation defined as the restriction of a diffeomorphism to a neighborhood of
a saddle point, then the local unstable manifold of the saddle is the attractor
dual to @, while the stable manifold is the repeller dual to @.

Example 9.11. Let X = [0,1], and let
f={(z,y) eXxX:y=0o0rz=1}

Then {0} is an attractor with dual repeller {1}. Note that {0} is invariant and
forward complete, but not rejecting, and that {1} is *-invariant and backward
complete, but not confining,.

10. CONNECTING ORBITS

The notion that the set of orbits connecting an attractor with its dual
repeller is a useful object of study was introduced by Conley [7]. This notion
gave rise the the theory of connection matrices, which has found some interesting
applications. (See the survey by Moeckel [18].) In this section it will be shown
that the following basic property of attractors holds in the setting of relations
on compact Hausdorff spaces: if an orbit contains a point which is neither in an
attractor A nor in its dual repeller A*, then the orbit must move from A* to A,

Once again, throughout this section, f will denote a closed relation on a
compact Hausdorff space X.

Definition. If A is an attractor for f, then the set of connecting orbits
associated with A is given by

C(A) = (AUA™)°.
By definition, A* = B(A)°, and, by Theorem 9.3, A° = B(A*). Therefore,
(10-1) C(A) = A°N(A")° = B(A*)NB(A).
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Theorem 8.1 implies that A C B(A) = (A4*)¢ and hence that A* C A°. Therefore,
the first equality of (10-1) implies that

(10-2) AUC(A) = AU(4A%)° = (4%)°
and that
(10-3) A*UC(A) = A*U A = A

Among other things, it has just been established that the space X breaks into
the disjoint union of A, A*, and C(A).

The following theorem justifies the terminology “connecting orbits.” It
states that any orbit intersecting C(A) moves from A* to A.

Theorem 10.1. If A is an attractor and if (p,I) is an orbit for a closed
relation on a compact Hausdorff space, and if py N C(A) # 0, then w((p,I)) C A
and w*((p, 1)) C A*.

Proof. Choose i € I such that p; € C(A). Equality (10-1) implies that
pi € B(A)NB(A*), which implies that w(p;) C A and w*(p;) C A*. Theorem 6.2
implies that w((p,I)) C w(p;) and that w*((p,I)) C w*(p;), which, together with
the previous two inclusions, imply that w((p,I)) C A and that w*((p,I)) C
A*. O

In the general setting of relations, one must allow for a possibility which
cannot occur for maps. Since there may exist points x € A* and y € A such that
x — y, it is possible for an orbit to move from A* to A without ever intersecting
C(A). However, since A is invariant and since A* is *-invariant, a jump from
A* to A can occur at most once. Thus an orbit which is not contained entirely
in A or entirely in A* has no choice but to move from A* to A. These remarks
are made precise in the theorem following the next lemma.

Lemma 10.2. If A is an attractor for f and if (p,I) is an orbit for f,
then the following implications hold.

(1) piNA# 0 = w((p,])) C A.
(2) prNA* # 0 = w*((p,I)) C A*.

Proof. Suppose there exists an ¢ € I such that p; € A. Theorems 6.2
and 5.12 imply that w((p,I)) C w(p;) C w(A) = A, which establishes impli-
cation (1). Implication (2) follows by application of implication (1) to A*,
considered as an attractor for f*. O

Theorem 10.3. If A is an attractor and if (p,I) is an orbit for a closed
relation on a compact Hausdorff space, then one of the following statements is
true.

(1) pr C A.
(2) pr c A*.
(3) w((p,1)) C A and w*((p,1)) C A*.
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Proof. Let (p,I) be an orbit for the relation. There are only two possibilities.
Either py NC(A) # @, or pr NC(A) = 0. In the first case, Theorem 10.1 implies
that statement (3) holds, and the proof is complete. Therefore, it suffices to
establish the result under the assumption that py N C(4) = @.

Assume that both statements (1) and (2) are false. It will be shown
that statement (3) must be true. Since statement (1) is false, it follows that
prNA° # @. Equality (10-3) therefore implies that (py N A*) U (py N C(A)) # 0.
Since it is assumed that py NC(A) = @, it follows that py N A* # @, which,
by Lemma 10.2, implies that w*((p,I)) C A*. A similar argument using
equality (10-2) implies that w((p,I)) C A. Therefore, statement (3) holds, and
the proof is complete. O

11. ITERATED FUNCTION SYSTEMS AND JULIA SETS

Barnsley has studied fractals generated by sets of contraction mappings [2].
The first goal of this section is to show that Barnsley’s definition of attractor
and the one given in this paper are identical whenever they both are defined.

The following definition of an “Iterated Function System” is paraphrased
from that given in Barnsley’s book [2].

Definition. If X is a metric space, then an Iterated Function System on
X is a finite set {w;,ws,...,wn} of contraction mappings on X.

An Iterated Function System W = {wi,ws,...,wn} on X determines a
relation f on X in the obvious way:

fw ={(z,y) € X x X : y = w;(z) for some i = 1,...,N }.

The “Random Iteration Algorithm” [2] produces a sequence z, n =
0,1,2,..., satisfying
Zn € {w1(Tn-1),w2(Tn-1),-..,wN(Tn-1)}, n=12,....
Note that (z,[0,00)) satisfies the definition of orbit given above in Section 4.
That is, a sequence produced by the Random Iteration Algorithm is an orbit for

the associated relation.
Hutchinson proved the following theorem [12].

Theorem 11.1. If X is a nonempty complete metric space and if W
is a nonempty finite set of contraction mappings on X, then there is a unique
nonempty closed bounded set A such that fyw(A) = A.

Barnsley calls the set A “the attractor” for the Iterated Function System.
The following theorem shows that Barnsley’s notion of attractor coincides with
the definition given above in Section 7.

Theorem 11.2. If X is a nonempty compact metric space and if W is
a nonempty finite set of contraction mappings on X, then A is a nonempty
attractor for fw if and only if A is a nonempty compact invariant set for fy .
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Proof. If A is an attractor for fys, then Lemma 7.1 implies that A is a
compact invariant set.

Now assume that A is a nonempty compact invariant set. Since X is a
closed attractor block for fir, w(X) is an attractor for fyr. Theorem 5.9 implies
that w(X) is a compact invariant set. Note that, for every z € X, z — w(x),
for each w € W. Therefore, Lemma 4.1 implies that X is forward complete, and
Corollary 6.6 implies that w(X) # @. Since X is a compact metric space, both
A and w(X) are nonempty closed bounded invariant sets. Hutchinson’s theorem
implies that w(X) = A and hence that A is an attractor. m|

Note that an Iterated Function System has only one nonempty attractor,
the attractor dual to the repeller @.

Example 11.3. Let X be the real interval [0,1], and let f be the relation
on X defined by

f={(z,y) eXxX:3y=xo0r3y=x+2}.
This relation corresponds to the Iterated Function System {w;, w2}, where

wl(x) =

wa(z) =
The nonempty attractor is the standard middle third Cantor set.

This paper ends with a short discussion of how Julia sets fit into the
framework presented here. A rigorous introduction to Julia sets and Mandelbrot
sets was written by Blanchard [3], where the reader can find proofs of the results
implied in the following discussion.

Let X be the Riemann sphere and consider the standard quadratic map
Qc(2) = 2% + ¢, where c is a complex number. Let

fe={(z,w) e X x X :w=Q(2)}

The point at infinity is an attractor Ay, with dual repeller the so-called “filled
Julia set.”

For values of ¢ in the complement of the Mandelbrot set, A is the only
nontrivial attractor. In this case, A% is the Julia set.

For many values of ¢ in the Mandelbrot set, there is another attractor A,
which is either a fixed point or a periodic orbit. Its dual repeller is the union of
the Julia set with the basin of attraction of co. For these values of ¢, one can
form another attractor by taking A = A, UA.. The Julia set is the repeller
dual to A.

Note that the Julia set is an attractor for f.*. This fact is the basis for one
of the early algorithms for using a computer to visualize the Julia set [3].
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