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One of the basic tasks in dynamical systems theory is to study structures
which persists under small perturbations of the system. As an illustration of
this idea, consider the concept of ”structural stability”. Roughly speaking,
an appropriate topology is placed on the space of all systems under consider-
ation. A given system is called ”structurally stable” if it has a neighborhood
in the space such that every system within that neighborhood is topologi-
cally conjugate to the given system. Besides being an elegant and interesting
way to view dynamical systems, this concept can be justified as important
outside of mathematics for the following reason. Since it is impossible to
know a system exactly, it is imprudent to concentrate on those properties of
a system which are not shared by nearby systems. Since all of the topological
properties of a structurally stable system are shared by its neighbors, such
systems are important to study.

In many applications, one wishes to carry this concept a step further.
A metric is sometimes a natural part of an application, and the ”distance”
between two different systems can actually be assigned a meaningful quantity.
Furthermore, one might have an estimate on how well the system is known,
that is, one might be confident that the actual system under study is within
a certain distance, say 2−64, of the mathematical model. Although proving
that the model system is structurally stable would be interesting, it would
not necessarily imply any statement about the actual system. The model
system might be structurally stable even though a topologically different
system exists within a distance of 10−100 from it. A much more useful result
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would be that all systems within a distance 2−64 of the model system share
its topological type, a result which makes a very strong statement about the
actual system.

For applications of this sort, a concept of ”ε-structurally stable” would
be more useful. A system could be called ”ε-structurally stable” if every
system within an ε-neighborhood of the given system shared its topological
type. The usual notion of structural stability could then be stated thus: a
system is called ”structurally stable” if there exists an ε such that it is ε-
structurally stable. The difference between the two concepts is that, in one
case, ε is known only to exist, while in the other case, an actual estimate for
ε is known.

The discussion so far has centered around the notion of structural stability
as an illustration of the difference between knowing the value of ε and know-
ing the existence of ε. However, structural stability is an extremely strong
demand on a system, since it insists on the persistence of every fine topolog-
ical detail. Sometimes the study of persistence of much coarser properties
is sufficient for the particular application. One of the coarsest of properties
is the existence of an attractor, and this is the property under investigation
here. Again speaking roughly, an attractor is an invariant set which attracts
everything in a neighborhood of itself. Attractors persist in the sense that,
given a system with an attractor, every nearby system has a corresponding
attractor. As before, one can ask how big a perturbation is allowed. As
described in detail below, the answer is intimately tied to the strength by
which the attractor attracts. Strong attractors persist further than weak
attractors. Indeed, in Section 6 below is introduced a notion of the strength
of an attractor called the ”intensity” of attraction. An attractor will persist
for all systems within a distance, in the C0 metric, given by the intensity of
attraction.

The motivating consideration for this study, and its only application in
this paper, is computer simulation of dynamical systems. In a sense, this pa-
per can be viewed as a study of the effect of round-off error on the problem of
using direct computer simulations to find attractors of maps. For example,
suppose that a map on some Euclidean space is being studied via simulations
on a computer, and suppose that the round-off error introduced by the com-
puter is of the order of 2−64. If the system has an attractor which persists
under perturbations of size greater than 2−64, then there is some chance that
the computer will find the attractor despite the introduced round-off error.
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On the other hand, an attractor which fails to persist for some perturbation
of size less than 2−64 might easily be missed by the computer simulation.

An interesting by-product of this study appears in Section 5, where a
proof of the existence of an attractor block is given. An ”attractor block”
for a given attractor is a compact neighborhood of the attractor which maps
strictly interior to itself and which converges to the attractor under iteration
of the map. An ”ε-pseudo-orbit” is a sequence of points obtained by succe-
sively following the map and then jumping a distance less then ε. It turns out
that, for small enough ε, the set of all points accessible by ε-pseudo-orbits
starting on a given attractor is an attractor block for that attractor.

The setting for this study is the iteration of maps on locally compact
metric spaces. The notions introduced here, in particular, the notion of the
”intensity” of an attractor, are inherently metric, not topological, in char-
acter. One may just as well think of maps on a Euclidean space or on a
manifold, but, since no structure other than the metric is needed here, none
is assumed. About the only advantage of not assuming compactness is the
direct applicability, without further comment, to Euclidean spaces. No new
insights are needed to prove the theorems in this more general setting of
locally compact spaces; only care is needed in the definitions. An important
step, not addressed in this paper, would be to extend the results to spaces
which are not locally compact, such as infinite dimensional function spaces,
and to thereby achieve some applicability to systems defined by partial dif-
ferential equations or by differential-delay equations. Another direction, ac-
tively being pursued by Easton [5] and by Norton [11] is to study the entire
Conley decomposition in these same metric terms.

Two of the examples worked out in the last section below illustrate cases
where the intensity of attraction is so low that one cannot expect to find
the attractor by computer simulation. In both cases, the attractor is a pe-
riodic orbit with a fairly low period. Both examples occur in systems which
have been studied intensively by computer simulations. When viewed in
one light, these examples illustrate that the computer might not be the best
tool for uncovering certain phenomena considered important in the math-
ematical theory of dynamical systems. When viewed in a different light,
these examples illustrate that certain phenomena considered important in
the mathematical theory of dynamical systems may be of little importance
in applications. Which light ultimately outshines the other remains to be
seen. What is clear is that a great deal of further investigation is needed
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to illuminate the connections between mathematical experimentation and
mathematical theory.

1 Iteration of Maps on Locally Compact Met-

ric Spaces

Throughout this paper, (X, d) denotes a locally compact metric space, while
φ denotes a continuous map from X to itself. The following standard defini-
tions and notations are used.

If S is a subset of X, then a neighborhood of S is a set U containing S in
its interior. That is, there exists an open set V such that S ⊂ V ⊂ U . If U
is itself open, it is called an open neighborhood of S. If U is compact, it is
called a compact neighborhood of S.

The closure of S is denoted by S, the interior of S by So, and the com-
plement of S by Sc. The relative complement of S2 with respect to S1, that
is, the set S1 ∩ Sc

2, is denoted by S1 \ S2.
The following standard result states that every compact set has arbitrarily

small compact neighborhoods.

Lemma 1.1 If K is compact and if V is a neighborhood of K, then there
exists a compact neighborhood G of K such that G ⊂ V .

The notion of convergence in the ”Hausdorff metric” will be used implic-
itly throughout this paper. However, since the concept will not be used in
its full generality, the following notation is introduced for the special case of
interest here.

Let Sn, n ≥ 0, be a sequence of subsets of X, and let S ⊂ X. The
notation

Sn ↘ S, as n→ ∞
means that

(1) k > n⇒ Sk ⊂ Sn,
(2) S =

⋂
n≥0 Sn, and

(3) ∀ neighborhood V of S, ∃ m ≥ 0, such that Sm ⊂ V .

Recall that, if Sn is compact for every n, then so is S. If, in addition, each
Sn is nonempty, then so is S.

The following standard results will be used below.
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Lemma 1.2 If Kn is a nested sequence of compact sets, then

Kn ↘ ⋂
n≥0

Kn, as n→ ∞.

Lemma 1.3 If Sn is a nested sequence of subsets of X, if K is a compact
set satisfying K ⊂ Sn, for all n ≥ 0, and if for every compact neighborhood
G of K there exists an m ≥ 0 such that Sm ⊂ G, then Sn ↘ K, as n→ ∞.

Lemma 1.4 If Sn ↘ K, as n → ∞, if K is compact, and if φ : X → X is
continuous, then φ(Sn) ↘ φ(K), as n→ ∞.

If Sε, ε > 0, is a family of subsets of X, then an analogous definition can
be given for the notation

Sε ↘ S, as ε→ 0 + .

Results analogous to those of Lemmas 1.2, 1.3, and 1.4 also hold.
An important concept in the study of the dynamics of the iterations of the

coninuous map φ : X → X is that of ”invariance”. The following definition
is standard.

Definition: A set S is called positively invariant if φ(S) ⊂ S. It is called
invariant if φ(S) = S.

Note that if S is positively invariant, so is S. The following question
arises. Does the invariance of S imply the invariance of S? If φ is a homeo-
morphism, then the answer is ”yes”. The answer is also ”yes” if X is compact
or if S is compact. However, the following example shows that the answer in
general is ”no”.

Example 1.5 Let X be the real number line, let φ(x) = ex sinx, and let
S = (0,∞). Note that φ(S) = S but that φ(S) = S �= S.

The ”omega limit set” of a subset of X, a notion discussed extensively
by Conley in the case of flows, is another important concept. For S ⊂ X ,
denote

τn(S) ≡
⋃
k≥n

φk(S),

ω(S) ≡ ⋂
n≥0

τn(S).
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The set ω(S) is called the omega limit set of S. Note that ω(S) is closed. If
S consists of a single point, then the above definition reduces to the classical
definition of the omega limit set of a point:

ω(x) ≡ ω({x}).

The following lemma establishes some elementary properties of the se-
quence τn(S).

Lemma 1.6 The following properties hold whenever they are defined.
(1) φ(τn(S)) = τn+1(S) ⊂ τn(S).

(2) φ(τn(S)) = τn+1(S).
(3) φ(S) ⊂ S ⇒ τn(S) = φn(S).

Proof: Properties (1) and (3) follow immediately from the definition. To
prove property (2), note that property (1) implies that τn+1(S) = φ(τn(S)) ⊂
φ(τn(S)) ⊂ φ(τn(S)) = τn+1(S). Application of the closure operation to this
formula yields property (2), and the proof is complete.

The following two lemmas establish results to be used in later sections.
Both give sufficient conditions for τn(S) to converge in the Hausdorff metric.

Lemma 1.7 If S is nonempty, and if τ0(S) is compact, then ω(S) is a
nonempty compact set and τn(S) ↘ ω(S).

Proof: Since τ0(S) is compact, property (1) of Lemma 1.6 implies that τn(S)
is a nested sequence of nonempty compact sets. Therefore ω(S) is nonempty
and compact. Application of Lemma 1.2 completes the proof.

Lemma 1.8 If G is a nonempty compact positively invariant set, then ω(G)
is a nonempty compact set and φn(G) ↘ ω(G).

Proof: Since G is positively invariant, property (3) of Lemma 1.6 implies
that φn(G) = τn(G). Since G is compact, so is φn(G), and, therefore,
φn(G) = τn(G). Application of Lemma 1.7 completes the proof.

The following lemma establishes some elementary properties of the omega
limit set.
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Lemma 1.9 The following properties hold whenever they are defined.
(1) S1 ⊂ S2 ⇒ ω(S1) ⊂ ω(S2).
(2) φ(S) = S ⇒ ω(S) = S.
(3) φ(S) ⊂ S ⇒ ω(S) =

⋂
n≥0 φ

n(S).
(4) φ(S) ⊂ S ⇒ ω(S) ⊂ S.
(5) ω(φ(S)) = ω(S).
(6) φ(ω(S)) ⊂ ω(S).

Proof: The proofs of properties (1) and (2) follow immediately from the
definitions. The proof of property (3) follows from the definition and from
property (3) of Lemma 1.6. To prove property (4), note that φ(S) ⊂ S
implies that φn(S) ⊂ S, for all n ≥ 0, which implies that φn(S) ⊂ S, for
all n ≥ 0. The result follows by combining this last inclusion with property
(3). The proof of property (5) follows immediately fom the definitions. To
prove property (6), note that φ(ω(S)) = φ(

⋂
n≥0 τn(S)) ⊂ ⋂

n≥0 φ(τn(S)) ⊂⋂
n≥0 φ(τn(S)). Property (1) of Lemma 1.6 therefore implies that φ(ω(S)) ⊂⋂
n≥0 τn+1(S) = ω(S). The proof is complete.

Property (6) of Lemma 1.9 states that ω(S) is positively invariant, and
it raises the question of whether ω(S) is invariant. Example 1.5 above shows
that, in general, the answer is ”no”, since ω(S) = S is not invariant for that
example. On the other hand, if φ is a homeomorphism, it is easy to show
that the answer is ”yes”. The following lemma states other conditions for
which ω(S) is invariant.

Lemma 1.10 If S is nonempty, and if any one of the following conditions
holds, then ω(S) is a nonempty compact invariant set.

(1) τ0(S) is compact.
(2) S is compact and positively invariant.
(3) X is compact.

Proof: To establish the sufficiency of condition (1), note that, since τ0(S) is
compact, Lemma 1.7 implies that ω(S) is nonempty and compact and that
τn(S) ↘ ω(S). Lemma 1.4 then implies that φ(τn(S)) ↘ φ(ω(S)), as n→ ∞.
Since τn(S) is compact, so is φ(τn(S)). Property (2) of Lemma 1.6 therefore
implies that τn+1(S) = φ(τn(S)) and hence that τn+1(S) ↘ φ(ω(S)), as
n → ∞. Therefore φ(ω(S)) = ω(S), that is, ω(S) is invariant. Next note
that conditon (2) implies condition (1), since, if S is compact and positively

7



invariant, then τ0(S) = S. Finally, note that condition (3) implies condition
(1), since a closed subset of a compact set is compact. The proof is complete.

It is tempting to speculate that the compactness of ω(S) is sufficient
to insure its invariance. However, the following example shows that the
speculation would be incorrect.

Example 1.11 Let

X = {(x, k) : x ∈ R, k ∈ Z, k ≥ 0},

φ(x, k) =

⎧⎪⎨
⎪⎩

(x+ 1, k − 1), k ≥ 2,
(sin x, 0), k = 1,
(x/2, 0), k = 0,

and let

K = {(x, 0) : −1 ≤ x ≤ 1}, S = {(x, k) : x ≥ 0, k ≥ 1}.

Note that ω(S) = K, which is compact but not invariant.

2 Attractors

The following definition is a modification to this setting of that given by
Conley [2,3] for flows on compact metric spaces.

Definition: A set A is an attractor for φ if
(1) A is a nonempty compact invariant set and
(2) there exists a neighborhood U of A such that ω(U) = A.

Some authors would call A an ”attracting set” and would reserve the
name ”attractor” for an attracting set with further properties. However, in
this paper Conley’s terminology will be followed.

The preceeding definition is somewhat weak in the sense that the only
assumption on the neighborhood U is that ω(U) = A. However, this as-
sumption is actually very strong. For example, the neighborhood U can
be taken to be compact, positively invariant, and arbitrarily close to A, as
stated in Theorem 2.1 below. Also, the notion of attractor corresponds to
the more classical notion of ”asymptotically stable”. The following definition
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is a translation to this setting of the classical definition as found in the book
by LaSalle and Lefschetz [9]

Definition: A compact invariant set S is called stable if for each neighbor-
hood V of S there exists a neighborhood V ′ of S such that

φn(V ′) ⊂ V, ∀n ≥ 0.

The set is called asymptotically stable if it is stable and if there exists a
neighborhood W of S such that ω(x) ⊂ S, ∀x ∈ W .

Theorem 2.1 If A is a nonempty compact invariant set, then the following
statements are equivalent.

(1) A is an attractor.
(2) If V is any neighborhood of A, then there exists a compact neighbor-

hood K of A such that K ⊂ V and ω(K) = A.
(3) If V is any neighborhood of A, then there exists a positively invariant

compact neighborhood G of A such that G ⊂ V and ω(G) = A.
(4) A is asymptotically stable.

Proof that (1) ⇒(2): Since A is an attractor, there exists a neighborhood
U of A such that ω(U) = A. Lemma 1.1 implies the existence of a compact
neighborhood K of A such that K ⊂ U∩V . Properties (1) and (2) of Lemma
1.9 then imply that A = ω(A) ⊂ ω(K) ⊂ ω(U) = A. Therefore, ω(K) = A,
and the proof is complete.

Proof that (2)⇒(3): Let V be a neighborhood of A and let K be a compact
neighborhood of A such that K ⊂ V and ω(K) = A. Since φ is continuous
and A is invariant, we can find an open neighborhood S of A such that

S ⊂ K and φ(S) ⊂ K.

Let Kn = τn(K). Since A = ω(K) =
⋂

n≥0Kn, we have that {Kc
n} is an open

cover of K \S. Since K \S is compact, there is a finite subcover. Since {Kc
n}

is nested, there exists an m ≥ 0 such that Kc
m ⊃ K \ S, and hence such that

Kn ⊂ Kc ∪ S, for all n ≥ m. Since φn(K) ⊂ τn(K) ⊂ Kn, it follows that
φn(K) ⊂ Kc ∪ S, for all n ≥ m. Indeed, for any Z ⊂ K,

φn(Z) ⊂ Kc ∪ S, ∀n ≥ m.
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In other words,
φn(Z) ⊂ K ⇒ φn(Z) ⊂ S, ∀n ≥ m.

Therefore,
φn(Z) ⊂ K ⇒ φn+1(Z) ⊂ φ(S) ⊂ K, ∀n ≥ m.

Induction applied to the preceeding formula yields
(2-1) Z ⊂ K and φm(Z) ⊂ K ⇒ φn(Z) ⊂ K, ∀n ≥ m.
Now let

S ′ ≡ S ∩ φ−1(S) ∩ · · · ∩ φ−(m−1)(S).

Note that S ′ is a neighborhood of A and that

φn(S ′) ⊂ S ⊂ K, for n = 0, 1, . . . , m− 1.

Since φ(S) ⊂ K, it follows that φn(S ′) ⊂ K for n = m as well. Formula (2-1)
with Z = S ′ implies that φn(S ′) ⊂ K, for all n ≥ m. Therefore,

φn(S ′) ⊂ K, ∀n ≥ 0,

from which it follows that τ0(S
′) ⊂ K. Now let G = τ0(S ′). Note that A ⊂

S ′ ⊂ G ⊂ K ⊂ V . Therefore, G is a compact neighborhood of A satisfying
G ⊂ V . Properties (1) and (2) of Lemma 1.6 imply that φ(τ0(S ′)) ⊂ τ1(S ′) ⊂
τ0(S ′) and hence that φ(G) ⊂ G. Therefore, G is positively invariant, and
the proof is complete.

Proof that (3) ⇒ (4): Let V be a neighborhood of A, and let G be a
positively invariant compact neighborhood ofA satisfying G ⊂ V and ω(G) =
A. LetW = V ′ = G. Since G is positively invariant, φn(V ′) ⊂ G ⊂ V , for all
n ≥ 0. Therefore A is stable. Furthermore, for all x ∈ W = G, property (1)
of Lemma 1.9 implies that ω(x) ⊂ ω(G) = A. Therefore, A is asymptotically
stable, and the proof is complete.

Proof that (4) ⇒ (1): By definition, there exists a neighborhood W of A
such that, ∀x ∈ W , ω(x) ⊂ A. Since A is stable, there exists a neighborhood
W ′ of A such that φn(W ′) ⊂ W , ∀n ≥ 0. Without loss of generality, W and
W ′ can be assumed to be compact. Now let V be any neighborhood of A. It
will be shown that ω(W ′) ⊂ V . Since V is arbitrary and since A is closed, it
follows that ω(W ′) ⊂ A, and hence that A is an attractor.

Since A is stable, there exists an open neighborhood V ′ of A such that
φn(V ′) ⊂ V , ∀n ≥ 0. Since φn(W ′) ⊂ W , ∀n ≥ 0, it follows that, for each
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x ∈ W ′, φn(x) ⊂W , ∀n ≥ 0, and hence that τ0(x) ⊂W , ∀x ∈ W ′. SinceW is
compact, τ0(x) is compact, and Lemma 1.7 implies that τn(x) ↘ ω(x) ⊂ A.
Therefore, there exists an nx such that τnx(x) ⊂ V ′, which implies that
φnx(x) ∈ V ′. Since φnx is continuous and since V ′ is open, there exists a
neighborhood Ux of x such that φnx(Ux) ⊂ V ′. Since φk(V ′) ⊂ V , ∀k ≥ 0, it
follows that

φn(Ux) ⊂ V, ∀n ≥ nx.

Since W ′ is compact and since {Ux} covers W ′, there exists a finite subcover
Ux1 , Ux2, . . . , Uxm. If N = max(nx1, nx2 , . . . , nxm), then φn(W ′) ⊂ V , ∀n ≥
N , and hence τn(W

′) ⊂ V , ∀n ≥ N . Therefore, ω(W ′) ⊂ V , and the proof
is complete.

The set of all points attracted to A is called the domain of attraction of
A, denoted

D(A) ≡ {x ∈ X : ∅ �= ω(x) ⊂ A}.
Note that, if X is compact, it is always true that ω(x) �= ∅. This condition
is imposed in the noncompact case to avoid including points which escape to
infinity.

The following theorems establish that D(A) is an open set and that every
compact subset K of D(A) satisfies ω(K) ⊂ A.

Theorem 2.2 If G is a compact positively invariant neighborhood of an at-
tractor A such that ω(G) = A, then

G ⊂ D(A) =
⋃
n≥0

φ−n(G0),

and hence D(A) is open.

Proof: Let x ∈ G. Property (1) of Lemma 1.9 implies that ω(x) ⊂ ω(G) =
A. Since G is positively invariant, φn(x) ∈ G, ∀n ≥ 0, which implies that
τ0(x) ⊂ G. Since G is compact, so is τ0(x). Therefore, Lemma 1.7 implies
that ω(x) �= ∅, and the inclusion G ⊂ D(A) has been established.

Now let x ∈ D(A), and suppose that φn(x) /∈ G0, ∀n ≥ 0. Then φn(x) ∈
(G0)c, ∀n ≥ 0, which implies that ω(x) ⊂ (G0)c, which in turn implies that
ω(x) ∩ A = ∅, which is a contradiction. Therefore, x ∈ φ−n(G0), for some
n ≥ 0, and the inclusion D(A) ⊂ ⋃

n≥0 φ
−n(G0) has been established.
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Finally, let x ∈ φ−n(G0), for some n ≥ 0. Then φn(x) ⊂ G0 ⊂ G ⊂ D(A),
which, together with property (5) of Lemma 1.9 implies that ∅ �= ω(φn(x)) =
ω(x) ⊂ A. Therefore, x ∈ D(A), which establishes the final inclusion and
completes the proof.

Theorem 2.3 If A is an attractor and if K is a compact subset of D(A),
then ω(K) ⊂ A.

Proof: Statement (3) of Theorem 2.1 implies the existence of a positively
invariant compact neighborhood G of A such that ω(G) = A. Theorem 2.2
implies that K ⊂ D(A) =

⋃
n≥0 φ

−n(G0). Since K is compact, there exists a
finite subcover. That is, ∃m ≥ 0 such that

K ⊂
m⋃

n=0

φ−n(G0).

In other words, for each x ∈ K, there is an n ∈ [0, m] such that φn(x) ∈ G0.
Since G is positively invariant,

0 ≤ n ≤ m and φn(x) ⊂ G0 ⇒ φm(x) ⊂ G.

Therefore, φm(K) ⊂ G. Properties (1) and (5) of Lemma 1.9 imply that
ω(K) = ω(φm(K)) ⊂ ω(G) = A, which completes the proof.

3 Attractor Blocks

Conley and Easton [4] introduced the concept of an ”isolating block” as a
tool for the study of the topological properties of isolated invariant sets. A
special case is an isolating block for an attractor, also called an ”attractor
block”. A set is an attractor block if its image is strictly interior to itself.

Definition: A set B is called an attractor block for φ if B is compact and
nonempty and if φ(B) ⊂ Bo.

The following two theorems give the correspondence between attractors
and attractor blocks. Every attractor block has an attractor in its interior
given by allowing the block to converge through successive iterates of the
map. The attractor thus obtained is the maximal invariant set inside the
block. Conversely, every attractor can be surrounded by an attractor block
with the property that the attractor is the maximal invariant set inside the
block.
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Theorem 3.1 If B is an attractor block, then A ≡ ω(B) is an attractor.

Theorem 3.2 If A is an attractor and if V is any neighborhood of A, then
there exists an attractor block B ⊂ V such that A = ω(B).

If B is an attractor block, then ω(B) is called ”the attractor associated
with B”. If A is an attractor and if B is an attractor block such that
ω(B) = A, thenB is called ”an attractor block associated withA”. Of course,
although the attractor block uniquely determines its associated attractor,
many distinct attractor blocks can be found associated with a given attractor.

An attractor block has stronger stability properties than those of the
attractor. The attractor itself may change dramatically under perturbation
of the system, but the attractor block remains an attractor block under
perturbation. This stability is exploited by Conley in his study of the Morse
index and will be used extensively below in the present investigation.

Theorem 3.1 is proved next. The proof of Theorem 3.2 is postponed until
after the discussion of ”pseudo-orbits”, where it becomes a consequence of
Theorem 4.6.

Proof of Theorem 3.1: Since B is compact, nonempty and positively
invariant, condition (2) of Lemma 1.10 implies that A ≡ ω(B) is compact,
nonempty and invariant. Since A ⊂ B, it follows that A = φ(A) ⊂ φ(B) ⊂
Bo ⊂ B. Therefore, B is a neighborhood of A, which implies that A is an
attractor and completes the proof.

The remainder of this section is devoted to a metric characterization of
attractor blocks. Some notation is introduced to facilitate the description.

The set of points less than a positive distance ε from a point x is denoted

Nε(x) ≡ {y : d(x, y) < ε}.

The set of points whose minimum distance from a subset S is less than ε is
denoted

Nε(S) ≡
⋃
x∈S

Nε(x).

Note that Nε(S) is an open neighborhood of S.
The following standard result will be used below. It is stated here without

proof.
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Lemma 3.3 If V is a neighborhood of a compact set K, then there exists an
ε > 0 such that Nε(K) ⊂ V .

Some elementary properties of Nε(S) are gathered into the following
lemma. The proofs are easy and will be omitted.

Lemma 3.4 The following properties hold whenever they are defined.
(1) S1 ⊂ S2 ⇒ Nε(S1) ⊂ Nε(S2).
(2) ε < δ ⇒ Nε(S) ⊂ Nδ(S).
(3) Nε(

⋃
α∈I Sα) =

⋃
α∈I Nε(Sα), for any index set I.

(4) Nε(S) = Nε(S).

The following lemma will be used below.

Lemma 3.5 If Sε ↘ K, as ε→ 0+, and if K is compact, then Nε(Sε) ↘ K,
as ε → 0+.

Proof: Properties (1) and (2) of Lemma 3.4 imply that Nε(Sε) is a nested
family. Furthermore, K ⊂ Sε ⊂ Nε(Sε), for all ε > 0. Let G be a compact
neighborhood of K. In view of Lemma 1.3, the proof will be complete once
it is established that Nδ(Sδ) ⊂ G, for some δ > 0.

Let G′ be a compact neighborhood ofK such thatG′ ⊂ Go. The definition
of Sε ↘ K implies the existence of a δ > 0 such that Sδ ⊂ G′. Lemma 3.3
implies that δ can be chosen so that Nδ(G

′) ⊂ G as well. Property (1) of
Lemma 3.4 now implies that Nδ(Sδ) ⊂ G, and the proof is complete.

A standard notation has already been used without comment, namely, if
φ : X → X, then, for S ⊂ X,

φ(S) ≡ {φ(x) : x ∈ S}.
In other words, the map φ : X → X induces a map φ : 2X → 2X , where 2X

denotes the set of all subsets of X. Another map

φε : 2
X → 2X

can be defined by
φε(S) ≡ Nε(φ(S)), for ε > 0.

Note that φε(S) is the set of all points within a distance less than ε of the
image of S under φ. It will be convenient to adopt the notational convention

φε(S) ≡ ∅ , for ε ≤ 0.
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Lemma 3.6 The following properties hold whenever they are defined.
(1) S1 ⊂ S2 ⇒ φε(S1) ⊂ φε(S2).
(2) ε < δ → φε(S) ⊂ φδ(S).
(3) φε(

⋃
α∈I Sα) =

⋃
α∈I φε(Sα), for any index set I.

(4) φε(S) = φε(S).

Proof: Properties (1)-(3) are consequences of properties (1)-(3) of Lemma
3.4 and the analogous properties for the map φ. Property (1) of Lemma 3.4
implies that φε(S) ⊂ φε(S). Since φ(S) ⊂ φ(S), properties (1) and (4) of
Lemma 3.4 imply that φε(S) = Nε(φ(S)) ⊂ Nε(φ(S)) = Nε(φ(S)) = φε(S),
which establishes property (4) and completes the proof.

Lemma 3.7 If Sε ↘ K, as ε → 0+, and if K is compact, then

φε(Sε) ↘ φ(K) , as ε→ 0 + .

Proof: Lemma 1.4 implies that φ(Sε) ↘ φ(K). Since φ(K) is compact,
Lemma 3.5 implies that φε(Sε) = Nε(φ(Sε)) ↘ φ(K), and the proof is com-
plete.

Since φε is a map, it can be iterated. The standard notation for the
iterates will be used, namely,

φ0
ε(S) ≡ S,

φn
ε (S) ≡ φε(φ

n−1
ε (S)) , for n ≥ 1.

The following two lemmas will be needed for the discussion of pseudo-orbits.
The first follows readily from the corresponding properties of Lemma 3.6.
The proof of the second is a simple argument using induction on n and
Lemma 3.7.

Lemma 3.8 The following properties hold whenever they are defined.
(1) S1 ⊂ S2 ⇒ φn

ε (S1) ⊂ φn
ε (S2).

(2) ε < δ ⇒ φn
ε (S) ⊂ φn

δ (S).

Lemma 3.9 If K is compact and if n ≥ 0, then φn
ε (K) ↘ φn(K), as ε →

0+.
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It will be useful to measure the distance that an attractor block maps
inside itself. For S ⊂ X, define

β(S) ≡ sup{ε : φε(S) ⊂ S}.

Note that β(S) is the minimum distance from φ(S) to Sc and that β(S) ≥ 0,
for any subset S.

Lemma 3.10 β(S) ≥ β(S).

Proof: If φε(S) ⊂ S, then property (4) of Lemma 3.6 implies that φε(S) =
φε(S) ⊂ S ⊂ S. In other words,

{ε : φε(S) ⊂ S} ⊂ {ε : φε(S) ⊂ S}.

The result follows from this inclusion, and the proof is complete.

Theorem 3.11 A nonempty compact set K is an attractor block if and only
if β(K) > 0.

Proof: If β(K) > 0, then there exists an ε > 0 such that φε(K) ⊂ K.
Since φε(K) is an open set containing φ(K), it follows that φ(K) ⊂ Ko and
hence that K is an attractor block. To establish the converse, assume that
K is an attractor block and hence that φ(K) ⊂ Ko. Lemma 3.7 implies that
φε(K) ↘ K and hence that φδ(K) ⊂ Ko ⊂ K, for some δ > 0. Therefore,
β(K) ≥ δ > 0, and the proof is complete.

The following corollary gives a sufficient condition on a subset for its
closure to be an attractor block. The proof is an immediate consequence of
Theorem 3.11 and Lemma 3.10.

Corollary 3.12 Let S be a nonempty subset of X. If β(S) > 0 and if Sis
compact, then S is an attractor block.

4 Pseudo-orbits

The notion of a ”pseudo-orbit” has had important applications in several
different areas of dynamical systems. Most important has been the concept

16



of ”shadowing”, which has been used to prove the existence of orbits corre-
sponding to symbol shifts. Hammel, Yorke and Grebogi [7,8] have exploited
extensively the fact that a pseudo-orbit is the actual object computed by
a computer. They are able to show rigorously that certain orbits found by
simulation correspond to real orbits for the original system.

Roughly speaking, an ε-pseudo orbit is obtained by successively following
the system, each time making an ”error” of size less than ε.

Definition: A sequence (z0, z1, . . . , zn) of points in X satisfying

d(φ(zk−1), zk) < ε , for k = 1, 2, . . . , n,

is called an ε-pseudo-orbit of length n.

Note that the definition of a real orbit can be written in an analogous
way as follows. An orbit of length n is a sequence (x0, x1, . . . , xn) such that

d(φ(xk−1), xk) = 0 , for k = 1, 2, . . . , n.

Although Conley [3] uses the term ”ε-chain” for an ε-pseudo-orbit, the
latter terminology is more descriptive for the applications presented here and
will be used throughout this paper.

It turns out that attractor blocks can be constructed from ε-pseudo-orbits.
If one considers the set of all points which can be reached from an attractor
A by an ε-pseudo-orbit, then, for sufficiently small ε, that set is an attractor
block corresponding to A. This statement will be made precise and proved
in this section.

The following notation will be used to denote the set of all ε-pseudo-orbits
of length n starting in the set S.

Ψn
ε (S) = {(z0, z1, . . . , zn) : z0 ∈ S and d(φ(zk−1), zk) < ε for 1 ≤ k ≤ n}.

It will be convenient to have a notation for the kth coordinate of a pseudo-
orbit. For z = (z0, z1, . . . , zn) and for k = 0, 1, . . . , n, define

πkz ≡ zk.

It is clear that ε-pseudo-orbits are closely related to the map φε defined in
the previous section. Indeed, an ε-pseudo-orbit is simply a sequence of points
picked out of successive iterates of φε. More precisely, z is an ε-pseudo-orbit
if and only if
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(4-1) πkz ∈ φε(πk−1z), for k = 1, 2, . . . , n.
Observe that the notation φε(x) ≡ φε({x}) is used. The following lemma

states that points in the kth iterate of S under φε are precisely those points
in the kth coordinate of some ε-pseudo-orbit staring in S.

Lemma 4.1 Fix k ≥ 0. For every n ≥ k,

φk
ε(S) =

⋃{{πkz} : z ∈ Ψn
ε (S)}.

Proof: Denote the right hand side of the equation by Sn
k . The proof proceeds

by induction on k. For k = 0, φ0
ε(S) = S = Sn

0 . Assume that equality has
been established for k = j and for n ≥ j, and assume that n ≥ j + 1.
Property (3) of Lemma 3.6 and the induction hypothesis imply that
(4-2) φj+1

ε (S) = φε(φ
j
ε(S)) = φε(S

n
j ) =

⋃{φε(πjz) : z ∈ Ψn
ε (S)}.

Let x ∈ Sn
j+1. Then x = πj+1z, for some z ∈ Ψn

ε (S), which, when combined
with formula (4-1), means that x ∈ φε(πjz). Equation (4-2) then implies
that x ∈ φj+1

ε (S), and the inclusion

φj+1
ε (S) ⊃ Sn

j+1

is established. Now let x ∈ φj+1
ε (S). Equation (4-2) implies that x ∈ φε(πjz),

for some z ∈ Ψn
ε (S). Define w = (w0, w1, . . . , wn) by

wi =

⎧⎪⎨
⎪⎩
πiz for 0 ≤ i ≤ j,
x for i = j + 1,
φi−j−1(x) for j + 1 < i ≤ n.

Note that w ∈ Ψn
ε (S) and that πj+1w = x. Therefore, x ∈ Sn

j+1, and the
inclusion

φj+1
ε (S) ⊂ Sn

j+1

is established. The proof is complete.

The set of all points on all ε-pseudo-orbits of length n starting on the set
S will be denoted

P n
ε (S) ≡ ∪{{z0, z1, . . . , zn} : (z0, z1, . . . , zn) ∈ Ψn

ε (S)}.
Note that

P n
ε (S) = ∪{{πkz} : 0 ≤ k ≤ n and z ∈ Ψn

ε (S)}.
The following lemma states that the set of all points on ε-pseudo-orbits

starting on a set S is identical to the union of iterates of S under the map
φε.
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Lemma 4.2 P n
ε (S) = ∪n

k=0φ
k
ε(S).

Proof: Lemma 4.1 and the previously noted formula imply that

P n
ε (S) =

⋃{{πkz} : 0 ≤ k ≤ n and z ∈ Ψn
ε (S)}

=
n⋃

k=0

⋃{{πkz} : z ∈ Ψn
ε (S)} =

n⋃
k=0

φk
ε(S),

which completes the proof.

The set of all points on all ε-pseudo-orbits of arbitrary length will be
important in what is to follow. This set will be denoted

Pε(S) ≡ ∪∞
n=0P

n
ε (S).

Some elementary properties of this set are collected in the following lemma.

Lemma 4.3 The following properties hold whenever they are defined.
(1) Pε(S) = ∪∞

n=0φ
n
ε (S).

(2) S ⊂ Pε(S).
(3) ε < δ ⇒ Pε(S) ⊂ Pδ(S).
(4) β(Pε(S)) ≥ ε.

Proof: Property (1) is an immediate consequence of Lemma 4.2, while prop-
erty (2) is an immediate consequence of the definition of Pε(S). Property (3)
follows from property (1) and from property (2) of Lemma 3.8. Property (4)
follows from the definition of βand from property (3) of Lemma 3.6, which
implies that

φε(Pε(S)) = φε(∪∞
n=0φ

n
ε (S)) = ∪∞

n=0φ
n+1
ε (S) ⊂ Pε(S).

The proof is complete.

Note that this last property implies that the set Pε(S) of all points acces-
sible by ε-pseudo-orbits starting on S maps into itself by a distance at least
ε. In view of Corollary 3.12, Pε(S) would be an attractor block if it were
compact.

Corollary 4.4 If S is nonempty and if Pε(S) is compact, then Pε(S) is an
attractor block.
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This property is exploited in the next lemma.

Lemma 4.5 Let A be an attractor, let ε > 0, and define Bε ≡ Pε(A). If Bε

is compact and if Bε ⊂ D(A), then Bε is an attractor block associated with
A.

Proof: Corollary 4.4 implies that Bε is an attractor block. Property (2) of
Lemma 4.3 implies that A ⊂ Bε, which, with properties (1) and (2) of Lemma
1.9, implies that A = ω(A) ⊂ ω(Bε). Theorem 2.3 implies that ω(Bε) ⊂ A.
Therefore, A = ω(Bε), and the proof is complete.

It remains to show that Pε(A) is close to A for small ε.

Theorem 4.6 If A is an attractor, then Pε(A) ↘ A, as ε → 0+.

Proof: Properties (2) and (3) of Lemma 4.3 imply that Pε(A) is a nested
family and that A ⊂ Pε(A). Recall Lemma 1.3, and let G be an arbitrary
compact neighborhood of A. The proof will be complete once it is established
that Pδ(A) ⊂ G, for some δ > 0.

In view of statement (3) of Theorem 2.1, it can be assumed that G is
positively invariant. Since Lemma 1.8 implies that φn(G) ↘ A, as n → ∞,
an m can be chosen so that

φm(G) ⊂ Go.

Since φm(G) is compact, Lemma 3.9 implies that

φm
ε (G) ↘ φm(G), as ε→ 0 + .

Since A is compact and invariant, the same lemma implies that , for each
fixed n,

φn
ε (A) ↘ φn(A) = A, as ε→ 0 + .

Since G is a neighborhood of both φm(G) and A, a δ > 0 can be chosen so
that

φm
δ (G) ⊂ G and

φn
δ (A) ⊂ G, for n = 0, 1, . . . , m− 1.

Note that, if φk
δ (A) ⊂ G, then property (1) of Lemma 3.8 implies that

φm+k
δ (A) = φm

δ (φ
k
δ (A)) ⊂ φm

δ (G) ⊂ G. Therefore, by induction,

φn
δ (A) ⊂ G, for n ≥ 0.

20



Property (1) of Lemma 4.3 now implies that Pδ(A) ⊂ G, and the proof is
complete.

An immediate consequence of Theorem 4.6 is the following corollary.

Corollary 4.7 If U is a neighborhood of an attractor A, then there exists
an ε > 0 such that Pε(A) is compact and is a subset of U .

The machinery just developed now provides a proof of Theorem 3.2.

Proof of Theorem 3.2: Let A be an attractor, let V be a neighborhood of
A, and define Bε ≡ Pε(A). The preceeding corollary implies the existence of
an ε > 0 such that Bε is compact and Bε ⊂ V ∩ D(A). Lemma 4.5 implies
that Bε is an attractor block associated with A, which completes the proof.

5 Intensity of Attraction

It is now possible to assign a precise quantity to measure the strength of
attraction of an attractor. Two definitions are given, followed by a proof
that the two are really the same. The first, called here the ”intensity”,
assigns to an attractor A the supremum over all values of β(B) such that B
is an attractor block for A. That is, every attractor block B associated with
A has the property that the minimum distance from the image of B to its
complement does not exceed the intensity of A. Furthermore, the intensity
is the smallest such number. The second definition, called here the ”chain
intensity”, assigns to an attractor A the supremum over all values of ε such
that every ε-pseudo-orbit starting in A stays in some compact subset of the
domain of attraction of A. That is, every ε-pseudo-orbit which starts in A
and for which ε does not exceed the chain intensity of A remains inside the
domain of attraction of A. On the other hand, if ε does exceed the chain
intensity of A, then one can find an ε-pseudo-orbit starting on A and leaving
every compact subset of the domain of attraction of A.

Definition: Let A be an attractor. The intensity of A is defined as

ν(A) ≡ sup{β(B) : B is an attractor block associated with A}.
The chain intensity of A is defined as

μ(A) ≡ sup{ε : Pε(A) ⊂ K ⊂ D(A), where K is compact }.
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Note that Theorems 3.2 and 3.11 imply that ν(A) is positive. Note also
that Corollary 4.7 implies the same for μ(A).

Theorem 5.1 ν(A) ≡ μ(A).

Proof: Let δ < ν(A). By definition, there is an attractor block B associated
with A such that β(B) > δ, which means that φδ(B) ⊂ B. Property (1) of
Lemma 3.6 implies that φn

δ (B) ⊂ B, ∀n ≥ 0, while property (1) of Lemma
3.8 implies that φn

δ (A) ⊂ φn
δ (B) ⊂ B, ∀n ≥ 0. Property (1) of Lemma 4.3

now implies that Pδ(A) ⊂ B ⊂ D(A). Since B is compact, δ ≤ μ(A) and,
since δ is arbitrary, the inequality

ν(A) ≤ μ(A)

is established.
Now let δ < μ(A). Define Bε ≡ Pε(A), and pick ε > δ so that Bε ⊂

D(A) and Bε is compact. Corollary 4.4 implies that Bε is an attractor block
associated with A. Lemma 3.10 and property (4) of Lemma 4.3 imply that
β(Bε) ≥ β(Pε(A)) ≥ ε and hence that ν(A) ≥ ε > δ. Since δ is arbitrary,
the inequality

ν(A) ≥ μ(A)

is established, and the proof is complete.

Conley was interested in the concept of ”continuation” of an isolated
invariant set in his study of the topological properties persisting under per-
turbation [3]. The remainder of this section is devoted to a brief discussion
of the relation between the intensity of an attractor and its continuation
properties.

Given two different maps on the same space and an attractor for each
map, one attractor is said to ”continue immediately” to the other if a common
attractor block can be found which is associated with each of the attractors.

Definition: Let A be an attractor for φ : X → X, and let A′ be an attractor
for ψ : X → X. The attractor A′ is said to be an immediate continuation
of the attractor A if there exists a subset B of X such that B is both an
attractor block for φ with associated attractor A and an attractor block for
ψ with associated attractor A′.

The notion of ”continuation” is obtained from the notion of ”immediate
continuation” by completing it to a transitive relation. In other words, an
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attractor for a map is said to ”continue” to an attractor for another map if a
sequence of maps and attractors can be found, each continuing immediately
to the next. Although this notion is very interesting, it will not be pursued
further in this paper.

However, the notion of ”immediate continuation” of an attractor is closely
related to its intensity of attraction. It will be convenient to introduce some
notation to be used in the discussion of this relationship. If A is an attractor
for the map φ, then the intensity depends not only on the set A but also on
the map φ. If there is any doubt about which map is used in the computation
of the intensity, then it will be expicitly indicated. In particular,

β(S;φ) ≡ sup{ε : φε(S) ⊂ S},
while

ν(A;φ) ≡ sup{β(B;φ) : B is an attractor block for φ associated with A}.
The standard C0 metric is used on the space of maps,

d(φ, ψ) ≡ sup
x∈X

d(φ(x), ψ(x)),

where φ and ψ are both maps on X . The following property is an immediate
consequence of the definitions.
(5-1) |β(S;φ)− β(S;ψ)| ≤ d(φ, ψ).

Theorem 5.2 If A is an attractor for the map φ and if the map ψ satisfies
d(φ, ψ) < ν(A;φ), then there exists an attractor A′ for ψ such that A′ is an
immediate continuation of A.

Proof: Choose an attractor block B associated with A and satisfying
β(B;φ) > d(φ, ψ). Inequality (5-1) implies that β(B;ψ) > 0. Theorem 3.11
therefore implies that B is an attractor block for ψ. The associated attractor
A′ is an immediate continuation of A, which completes the proof.

It is natural to ask whether there is some kind of converse to Theorem 5.2.
In other words, given an attractor A for the map φ and given an r > ν(A;φ),
does there exist a map ψ satisfying d(φ, ψ) < r such that ψ has no attractor
which is an immediate continuation of A? The following example shows that
the answer, in this generality, is ”no”. Although it would be interesting to
explore the conditions under which the answer is ”yes”, no such exploration
will be undertaken here.
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Example 5.3 Let B = [−1, 0], let X = B ∪ {1}, and let φ be the iden-
tity map on X. Note that φ(B) = B = Bo ⊂ Bo and thus that B is
an attractor block for φ with associated attractor A = B. Note also that
β(B;φ) = d(φ(B), Bc) = 1. Therefore, ν(A;φ) = 1, since B is the only
attractor block associated with A. Now let ψ : X → X satisfy d(φ, ψ) < 2.
Since B is connected and since ψ is continuous, either

(1) ψ(B) ⊂ B, or
(2) ψ(B) ⊂ {1}.

Note that (2) implies that ψ(−1) = 1, which implies that d(φ, ψ) ≥ 2, which
is a contradiction. Therefore, ψ(B) ⊂ B ⊂ Bo, which means that B is also
an attractor block for ψ. In summary, although ν(A;φ) = 1, every map φ
satisfying d(φ, ψ) < 2 has an attractor which is an immediate continuation
of A.

6 Discrete Approximations

When a dynamical system is simulated on a computer, a certain kind of
approximation is made. A computer has only a finite set of numbers which
it can represent. Given a point whose coordinates can be represented, the
computer performs some arithmetic and arrives at an approximate image
point. The true image point may not be representable, but it is usually safe
to assume that the computer’s approximation is close to the true one. If
everything is working correctly, the computer will always compute the same
approximate image point to a given initial point. The ideas discussed in this
section are slight modifications of the original ideas found in a paper by Lax
[10]. The reader is also referred to Rannou [12] and Hall [6] for further
development of the area-preserving case.

To be more precise, and more abstract, the notion of a ”net” for the
metric space X will be used.

Definition: If Y is a discrete subset of X, if δ > 0, and if Nδ(Y ) = X , then
Y is called a δ-net for X.

Note that Y is a metric space with the same metric d.
Suppose that the set of points representable by the computer is the δ-net

Y . Since the computer can represent only those points in Y , an attempt to
compute the map φ : X → X results in a map f : Y → Y .
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Definition: If Y is a δ-net for X , if φ : X → X, and if f : Y → Y satisfies

d(f(y), φ(y)) < ε, ∀y ∈ Y,

then f is called an ε-approximation for φ.

Note that, if δ ≤ ε, then an ε-approximation to φ always exists. Hence-
forth, this inequality will be assumed. Indeed, since a δ-net is automatically
an ε-net for any ε ≥ δ, it will be assumed that an ε-approximation occurs on
an ε-net. Thus the phrase ”f : Y → Y is an ε-approximation for φ : X → X”
means that Y is an ε-net for X and the previous definition holds.

In the context of computer simulations, the ε-approximation f is deter-
mined from the map φby the computer arithmetic, the compiler, and the
algorithm. The computer will always make the same error if it does the
same computation. Thus the simulation of iteration of the original map φ
on the computer is exactly the iteration of the map f .

If the map φ has an attractor, one can ask whether one can expect to see
the attractor in a computer simulation. This question can be interpreted as
asking whether the map f has an attractor corresponding to the attractor
for φ. Consider first the analogous question for attractor blocks.

Lemma 6.1 Let f : Y → Y be an ε-approximation for φ : X → X. The
following statements are true for every subset S of X.

(1) S ∩ Y �= ∅ and φα(S) ⊂ S ⇒ fα−ε(S ∩ Y ) ⊂ S ∩ Y .
(2) S ∩ Y �= ∅ ⇒ β(S ∩ Y ; f) ≥ β(S;φ)− ε.
(3) S �= ∅ and β(S;φ) > ε⇒ S ∩ Y �= ∅.

Therefore, if B is an attractor block for φ and if β(B;φ) > ε, then B ∩ Y is
an attractor block for f .

Proof: First, note that the neighborhood Nε(Z) is a subset of the ambient
space Z. Thus, fγ(S ∩ Y ) ⊂ Y , for any γ. Recall the convention that
φγ(S) ≡ ∅, for γ ≤ 0.

Consider statement (1). If α ≤ ε, then fα−ε(S∩Y ) = ∅ ⊂ S∩Y . Assume
that α > ε, and let y ∈ fα−ε(S ∩ Y ). By definition, there exists a point
z ∈ S ∩ Y such that d(y, f(z)) < α − ε. Then d(y, φ(z)) ≤ d(y, f(z)) +
d(f(z), φ(z)) < α, which, since z ∈ S, implies that y ∈ Nα(φ(S)) = φα(S) ⊂
S. Therefore, y ∈ S ∩ Y , and the proof of statement (1) is complete.
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Statement (2) is a consequence of the following inclusion, which is implied
by statement (1).

{α : φα(S) ⊂ S} ⊂ {α : fα−ε(S ∩ Y ) ⊂ S ∩ Y }

= {γ : fγ(S ∩ Y ) ⊂ S ∩ Y }+ ε.

Now consider statement (3). The definition of β(S;φ) implies that
Nε(φ(S)) = φε(S) ⊂ S. Let x ∈ φ(S). Since Y is an ε-net, there exists a
point y ∈ Y such that d(x, y) < ε. Therefore, y ∈ Nε(x) ⊂ Nε(φ(S)) ⊂ S,
which means that Y ∩ S �= ∅, and the proof of statement (3) is complete.

Finally, if B is an attractor block for φ, and if β(B;φ) > ε, then, by
statement (3), B∩Y �= ∅, and, by statement (2), β(B∩Y ; f) ≥ β(B;φ)−ε >
0. Therefore, since B ∩ Y is compact, Theorem 3.11 implies that B ∩ Y is
an attractor block for f , and the proof is complete.

It is now clear that, if A is the attractor for φ corresponding to the
attractor block B, then there is an attractor A′ for f corresponding to the
attractor block B ∩ Y . The attractor A′ is, in some sense, the computer’s
best representation of the attractor A.

Definition: Let f : Y → Y be an ε-approximation for φ : X → X, let A be
an attractor for φ, and let A′ be an attractor for f . If there exists a subset
B of X such that B is an attractor block for φ with associated attractor A
and such that B ∩Y is an attractor block for f with associated attractor A′,
then A′ is called a discrete representation of A.

The following theorem summarizes the previous discussion. It states that,
if the intensity of the attractorA exceeds the computer’s approximation error,
then there exists a discrete representation for A which the computer should
be able to find by iterating f .

Theorem 6.2 Let f : Y → Y be an ε-approximation for φ : X → X, and
let A be an attractor for φ. If ν(A;φ) > ε, then there exists an attractor A′

for f such that A′ is a discrete representation of A.

Proof: Since ν(A;φ) > ε, there exists an attractor block B associated with
A and satisfying β(B;φ) > ε. Lemma 6.1 implies that B ∩ Y is an attractor
block for f . If A′ is the attractor associated with B ∩ Y , then, by definition,
A′ is a discrete representation of A, and the proof is complete.

26



Theorem 6.2 gives a sufficient condition for the existence of a discrete
representation, but is it a necessary one? In other words, if the intensity is less
than the computer error, will the computer be unable to find the attractor?
The answer is given by the following theorem, which states that one can
find a discrete approximation and an orbit for the discrete approximation
which starts in the attractor and leaves the domain of attraction. Of course,
the discrete approximation might not be the one that the computer uses, but
the theorem shows that, in general, one cannot expect to find attractors with
small intensities.

Theorem 6.3 If A is an attractor for φ, if ε > ν(A;φ), and if K is any
compact subset of D(A), then there exists an ε-net Y , an ε-approximation
f : Y → Y , and an orbit (y0, y1, . . . , yn) of f with y0 ∈ A and yn /∈ K.

The proof will be given below after the proofs of the following lemmas.
Lemma 6.4 makes the observation that an orbit for f is an ε-pseudo-orbit for
φ. Lemma 6.6 is a converse; it gives conditions under which an ε-pseudo-orbit
for φ can become an orbit for a suitable ε-approximation.

Lemma 6.4 If f : Y → Y is an ε-approximation for φ : X → X, then an
orbit for f is an ε-pseudo-orbit for φ.

Proof: Let y = (y0, y1, . . . , yn) be an orbit for f . Then yk = f(yk−1), for
k = 1, 2, . . . , n. Since f is an ε-approximation for φ,

d(yk, φ(yk−1)) = d(f(yk−1), φ(yk−1)) < ε, for k = 1, 2, . . . , n,

which means that y is an ε-pseudo-orbit for φ. The proof is complete.

An inescapable property of an orbit (x0, x1, . . . , xn) is that xi = xj implies
that xi+1 = xj+1. It will be useful in what is to follow to insist on this
”consistency” property for pseudo-orbits.

Definition: An ε-pseudo-orbit (z0, z1, . . . , zn) for φ is called consistent if

zi = zj ⇒ zi+1 = zj+1, for 0 ≤ i, j ≤ n− 1.

Note that the conclusion of Lemma 6.4 can be stated that an orbit for
f is a consistent ε-pseudo-orbit for φ. Indeed, one may as well always use
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consistent pseudo-orbits, since inconsistent pseudo-orbits do not go places in-
accessible to consistent ones. this sentiment is expressed precisely in Lemma
6.5, but first it is convenient to introduce some notation.

Recall the notation introduced in Section 4: Ψn
ε (S) denotes the set of

ε-pseudo-orbits of length n starting on the set S, while P n
ε (S) denotes the

set of all points on all such pseudo-orbits. Similarly, the notation Γn
ε (S)

will denote the set of consistent ε-pseudo-orbits of length n starting on S,
while Qn

ε (S) will denote the set of all points on all such pseudo-orbits. More
precisely,

Γn
ε (S) ≡ {(z0, z1, . . . , zn) ∈ Ψn

ε (S) : zi = zj ⇒ zi+1 = zj+1},
Qn

ε (S) ≡ {{z0, z1, . . . , zn} : (z0, z1, . . . , zn) ∈ Γn
ε (S)}.

Note that n < m⇒ Qn
ε (S) ⊂ Qm

ε (S).

Lemma 6.5 Qn
ε (S) = P n

ε (S)

Proof: The inclusion Qn
ε (S) ⊂ P n

ε (S) is part of the definition. The proof of
the opposite inclusion proceeds by induction on n.

The case n = 0 is trivial. Assume that
(6-1) P n

ε (S) ⊂ Qn
ε (S)

has been established for 0 ≤ n ≤ m−1, and let x ∈ Pm
ε (S). Then x = zk, for

some z = (z0, z1, . . . , zm) ∈ Ψn
ε (S). If k < m, then, by inductive hypothesis,

x ∈ P k
ε (S) ⊂ Qk

ε(S) ⊂ Qm
ε (S), and inclusion (6-1) is established for n = m.

Therefore, assume that k = m, that is, assume that x = zm. If zi �= zj ,
for all i < j, then z is consistent, hence x ∈ Qm

ε (S), hence the inclusion is
again established. Therefore, assume that zi = zj , for some i < j. Define
w = (w0, w1, . . . , wm−j+1) by

wk =

{
zk for 0 ≤ k ≤ i,
zk−i+j for i < k ≤ m− j + i.

Note that w is an ε-pseudo-orbit and hence that x = zk = wm−j+i ∈
Pm−j+i
ε (S). Therefore, by inductive hypothesis, x ∈ Qm−j+i

ε (S) ⊂ Qm
ε (S),

and inclusion (6-1) is established for n = m. The proof is complete.

Lemma 6.6 Let z be a consistent ε-pseudo-orbit for φ : X → X. There
exists an ε-net Y for X and an ε-approximation f : Y → Y for φ such that
z is an orbit for f .
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Proof: Let z = (z0, z1, . . . , zn), define Y0 ≡ {z0, z1, . . . , zn−1}, and extend
Y0 ∪ {zn} to an ε-net Y for X . Define f : Y → Y as follows. If y /∈ Y0, then
choose f(y) satisfying d(f(y), φ(y)) < ε. The fact that Y is an ε-net for X
insures that this choice can be made. If y = zk ∈ Y0, then take f(y) = zk+1.
The consistency of z insures that f is well-defined. Since z is an ε-pseudo-
orbit for φ, d(f(zk), φ(zk)) = d(zk+1, φ(zk)) < ε, for k = 0, 1, . . . , n − 1.
Therefore, f is an ε-approximation for φ. By construction, z is an orbit for
f , and the proof is complete.

Proof of Theorem 6.3: By Theorem 5.1, the intensity of A is equivalent
to its chain intensity. Therefore, either Pε(A) is not a subset of D(A) or it
is not compact. In either case, there exists a point z ∈ Pε(A) ∩ Kc, which
implies the existence of a point w ∈ Pε(A) ∩ Kc. By definition of Pε(A),
w ∈ Pm

ε (A), for some m. Lemma 6.5 implies that w ∈ Qm
ε (A). Therefore,

there exists a consistent ε-pseudo-orbit z = (z0, z1, . . . , zn) such that z0 ∈ A
and zn = w. Lemma 6.6 implies the existence of an ε-net Y for X and an
ε-approximation f : Y → Y for φ such that z is an orbit for f . Since z0 ∈ A
and zn = w /∈ K, the proof is complete.

7 Subsystems

When the map φ is restricted to a positively invariant subset W of X, the
restriction is a dynamical system in its own right, often called a subsystem
of φ. It will be shown in this section that attractors restrict to subsystems
in a nice way.

Recall the notation introduced in Section 5 for the intensity when the
dependence on the map is explicitly denoted. The analogous notation will
also be used for the omega limit set, namely,

τn(S;φ) ≡
⋃
k≥n

φk(S),

ω(S;φ) ≡ ⋂
n≥0

τn(S;φ).

It should be noted that the closure operation refers to closure in the ambient
space X. The restriction of φ to W will be denoted φ|W .

Lemma 7.1 If W is closed and positively invariant under φ, if S ⊂W , and
if ψ ≡ φ|W , then ω(S;ψ) = ω(S;φ).

29



Proof: Since S ⊂ W , ψ(S) is defined and equals φ(S). Therefore, ψk(S) =
φk(S), for all k, which implies that τn(S;ψ) = τn(S;φ), for all n. Since W
is closed, the closure in W of a subset of W is identical to its closure in X.
Therefore, τn(S;ψ) = τn(S;φ), which implies that ω(S;ψ) = ω(S;φ), and
the proof is complete.

Lemma 7.2 If W is positively invariant under φ, if S ⊂ X, and if ψ ≡ φ|W ,
then the following properties hold.

(1) ψε(S ∩W ) ⊂ φε(S) ∩W .
(2) β(S ∩W ;ψ) ≥ β(S;φ).

Proof: It is essential to distinguish between a neighborhood in X and a
neighborhood in W . To this end, write

Nε(S;X) ≡ ∪x∈S{y ∈ X : d(x, y) < ε},
and note that

Nε(S ∩W ;X) ⊂ Nε(S;X) ∩W.
Note also that, since W is positively invariant,

ψ(S ∩W ) = φ(S ∩W ) ⊂ φ(S) ∩ φ(W ) ⊂ φ(S) ∩W.
Therefore,

ψε(S ∩W ) ≡ Nε(ψ(S ∩W );W ) ⊂ Nε(φ(S) ∩W ;W )

⊂ Nε(φ(S);X) ∩W = φε(S) ∩W,
which establishes property (1)

Now write S ′ ≡ S∩W , and suppose that φε(S) ⊂ S, for some ε. Property
(1) then implies that

ψε(S
′) ⊂ φε(S) ∩W ⊂ S ∩W = S ′.

Therefore,

{ε : φε(S) ⊂ S} ⊂ {ε : ψε(S
′) ⊂ S ′}.

Taking the supremum of both sides establishes property (2) and completes
the proof.
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Lemma 7.3 If W is closed and positively invariant under φ, if B is an
attractor block for φ, if B′ ≡ B ∩ W �= ∅, and if ψ ≡ φ|W , then B′ is an
attractor block for ψ and

β(B′;ψ) ≥ β(B;φ).

Proof: Property (2) of Lemma 7.2 implies the inequality. By hypothesis, B′

is nonempty. Since W is closed and B is compact, B′ is compact. Theorem
3.11 implies that β(B;φ) > 0, hence that β(B′;ψ) > 0, and hence that B′ is
an attractor block. The proof is complete.

Theorem 7.4 If W is closed and positively invariant under φ, if A is an
attractor for φ, if A′ ≡ A ∩W �= ∅, and if ψ ≡ φ|W , then A′ is an attractor
for ψ. Furthermore,

(1) D(A′) = D(A) ∩W , and
(2) ν(A′;ψ) ≥ ν(A;φ).

Proof: Since A is an attractor for φ, there exists a neighborhood U of A in
X satisfying ω(U ;φ) = A. If V ≡ U ∩W , then V is a neighborhood of A′ in
W . Properties (1) and (2) of Lemma 1.9 imply that

A′ = ω(A′;φ) ⊂ ω(V ;φ) ⊂ ω(U ;φ) = A.

Lemma 7.1 therefore implies that A′ ⊂ ω(V ;ψ) ⊂ A. Since ω(V ;ψ) ⊂W , it
follows that ω(V ;ψ) ⊂ A∩W = A′, which establishes that A′ is an attractor
for ψ.

The definition of domain of attraction is given in Section 2 and can be
restated in the present context as follows.

D(A) = {x ∈ X : ∅ �= ω(x, φ) ⊂ A}.
D(A′) = {x ∈ W : ∅ �= ω(x, ψ) ⊂ A′}.

In view of Lemma 7.1, the first formula implies that

D(A) ∩W = {x ∈ W : ∅ �= ω(x, ψ) ⊂ A}.
Since ω(x, ψ) ⊂W and since A′ = A ∩W , equality (1) follows.

Now let

Γ = {β(B;φ) : B is an attractor block associated with A},
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Γ′ = {β(B′;ψ) : B′ is an attractor block associated with A′}.
Since ν(A;φ) = supΓ and ν(A′;ψ) = sup Γ′, inequality (2) is established
once it is shown that
(7-1) ∀γ ∈ Γ, ∃γ′ ∈ Γ′ such that γ′ ≥ γ.
To this end, let B be an attractor block associated with A, and let γ ≡
β(B;φ). Since ∅ �= A ∩W ⊂ B ∩W = B′, Lemma 7.3 implies that B′ is an
attractor block and that β(B′;ψ) ≥ β(B;φ). Therefore, γ′ = β(B′;ψ) ≥ γ,
which establishes statement (7-1) and completes the proof.

Theorem 7.5 If A is an attractor for φ and if A′ is an attractor for φ|A,
then A′ is an attractor for φ.

Proof:All neighborhoods in this proof will be neighborhoods in the space X
unless otherwise explicitly indicated. Similarly, all omega limit sets will be
for the map φ unless otherwise indicated.

Write ψ ≡ φ|A. Theorem 2.1 (2) implies the existence of a closed neigh-
borhood K ′ of A′ in A satisfying
(7-2) ω(K ′;ψ) = A′.
Extend K ′ to a closed neighborhoodK of A′ in X , and note thatK ′ = K∩A.
Theorem 3.2 implies the existence of an attractor block B′ for ψ associated
with A′ and such that B′ is in the interior of K ′ relative to A. Note that
B′ ⊂ Ko, where now the interior is relative to X. Choose ε satisfying 0 <
ε < β(B′;φ), and choose δ > 0 satisfying
(7-3) Nδ(B

′) ⊂ K,
(7-4) φ(Nδ(B

′)) ⊂ Nε(φ(B
′)),

(7-5) ε+ δ < β(B′;ψ).
The two inclusions follow from Lemmas 3.3 and 1.4. Theorem 2.1 (3) now
implies the existence of a compact neighborhood G of A satisfying

G ⊂ Nδ(A), and ω(G) = A.

Now let
S ≡ Nδ(B′) ∩G,

and note that S is a compact neighborhood of A′. Note also that

ω(S) ⊂ ω(G) = A.
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It will be shown below that S is positively invariant. Lemma 1.9 (4) and
inclusion (7-3) then imply that

ω(S) ⊂ S ⊂ Nδ(B′) ⊂ K,

and hence that
ω(S) ⊂ K ∩A = K ′.

Since S is a compact positively invarant set, Lemma 1.10 implies that ω(S)
is a compact invariant set, which, by Lemma 1.9 (2), implies that ω(ω(S)) =
ω(S). Lemma 7.1 and equation (7-2) imply that ω(K ′) = A′, from which it
follows that

ω(S) ⊂ A′.

Since A′ is compact and invariant and since A′ ⊂ S, it follows that A′ ⊂ ω(S)
and hence that A′ = ω(S). Therefore, by definition, A′ is an attractor.

It remains to show only that S is positively invariant. Since G is positively
invariant, it follows that
(7-6) φ(S) ⊂ φ(G) ⊂ G ⊂ Nδ(A).
Inclusion (7-4) implies that

φ(S) ⊂ φ(Nδ(B
′)) ⊂ Nε(φ(B

′)),

which, with the previous inclusion implies that
(7-7) φ(S) ⊂ Nε(φ(B

′)) ∩Nδ(A).
It will be shown below that
(7-8) Nε(φ(B

′)) ∩Nδ(A) ⊂ Nδ(B
′),

which, with inclusions (7-6) and (7-7), implies that

φ(S) ⊂ Nδ(B
′) ∩G ⊂ S

and hence that S is positively invariant.
The proof will be complete once inclusion (7-8) is established. To this

and, let
y ∈ Nε(φ(B

′)) ∩Nδ(A).

There exist a z ∈ φ(B′) and an x ∈ A such that

d(y, z) < ε and d(y, x) < δ.
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Therefore, d(x, z) < ε+ δ, which implies that x ∈ Nε+δ(φ(B
′)). Since x ∈ A,

it follows that x ∈ ψε+δ(B
′). But inequality (7-5) implies that ψε+δ(B

′) ⊂ B′,
which implies that x ∈ B′. Since d(y, x) < δ, it follows that

y ∈ Nδ(B
′),

which establishes inclusion (7-8) and completes the proof of Theorem 7.5.

8 Examples

Sometimes it is possible to compute the intensity exactly, as the following
example shows.

Example 8.1 Let X = [0, b], and let ψ : X → X satisfy
(1) ψ(0) = 0 and ψ(b) = b,
(2) ψ(x) < x, for 0 < x < b, and
(3) ψ is strictly increasing on X.

The set A ≡ {0} is an attractor satisfying

ν(A) = max{x− ψ(x) : 0 ≤ x ≤ b}.

Proof: It is a standard exercise to show that A is an attractor with D(A) =
[0, b). Let

M ≡ max{x− ψ(x) : 0 ≤ x ≤ b}.
Note that Bt ≡ [0, t] is an attractor block associated with A for 0 < t < b
and that β(Bt) = t− ψ(t). Therefore, ν(A) ≥ sup{β(Bt) : 0 < t < b} = M ,
which establishes the inequality

ν(A) ≥M.

Now consider the sequence (z0, z1, . . . , zn), where z0 = 0, and zk = δ +
ψ(zk−1), for k = 1, 2, . . . , n. If δ > M , then zj ≥ zj−1+(δ−M), which means
that zj ≥ j(δ −M). Let k satisfy zj < b, for 0 ≤ j < k, and zk ≥ b. Define
w = (w0, w1, . . . , wn) by

wj =

{
zj for 0 ≤ j < k,
b for j = k.
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Note thatw is an ε-pseudo-orbit for any ε > δ and thatw leaves any compact
subset of D(A). Since δ can be chosen arbitrarily close to M , this statement
implies that

ν(A) = μ(A) ≤M,

and the proof is complete.

It is often of sufficient interest to find only an upper bound for the in-
tensity of an attractor. A good upper bound can be demonstrated for the
following example.

Example 8.2 Let X = R, and let φ : R → R satisfy
(1) φ(0) = 0,
(2) there exists b′ < 0 such that φ(x) > x for x ∈ (b′, 0),
(3) there exists b > 0 such that φ(b) = b and such that φ(x) < x, for

x ∈ (0, b), and
(4) φ is strictly increasing on [0, b].

The set A ≡ {0} is an attractor satisfying

ν(A) ≤ max{x− φ(x) : 0 ≤ x ≤ b}.
Proof: A standard argument shows that A is an attractor and thatW ≡ [0, b]
is an invariant set. The estimate can be reduced to the previous example by
letting ψ ≡ φ|[0,B]. Theorem 7.4 then implies that ν(A;φ) ≤ ν(A;ψ). But
the previous example shows that

ν(A;ψ) = max{x− ψ(x) : 0 ≤ x ≤ b}
= max{x− φ(x) : 0 ≤ x ≤ b},

which completes the proof.
The next example illustrates another case where an upper bound on the

intensity can be given. It will be used also in the computation in the examples
below.

Example 8.3 Let X be an interval containing 0 in its interior, and let φ :
X → X satisfy

(1) φ(0) = φ′(0) = 0,
(2) φ′′(0) ≥ c > 0, and
(3) φ′′′(x) ≥ −3

8
c2, for all x ∈ X.

Then A = {0}is an attractor with ν(A) ≤ 16/27c.
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Proof: First note that, for all x ∈ X,
(8-1) φ′(x) ≥ cx− 3c2

16
x2,

(8-2) φ(x) ≥ c
2
x2 − c2

16
x3.

Formula (8-2) implies that φ(4/c) ≥ 4/c. Therefore, there exists a positive
number b ≤ 4/c such that

φ(b) = b, and

φ(x) < x, for 0 < x < b.

Formula (8-1) implies that

φ′(x) > 0, for 0 < x < b.

It follows that φ meets the conditions of Example 8.2 and hence that A = {0}
is an attractor satisfying

ν(A) ≤ max{x− φ(x) : 0 ≤ x ≤ b}.
Now define

g(x) ≡ x− c

2
x2 +

c2

16
x3,

and note that inequality (8-2) implies that

x− φ(x) ≤ g(x).

Therefore,

ν(A) ≤ max{g(x) : 0 ≤ x ≤ b} ≤ max{g(x) : 0 ≤ x ≤ 4/c}.
An elementary calculus exercise shows that this last quantity is equal to
16/27c, and the proof is complete.

Example 8.4 Let X = R, and let φc : R → R be the general quadratic map
in standard form:

φc(x) = x2 + c.

There is a unique value of c, which happens to be close to −2, for which
there is a superattracting orbit of period q with itinerary CLRR · · ·R. In
other words, there is a periodic orbit A ≡ {x0, x1, . . . , xq−1}, with x0 = 0,
x1 < 0 and xk > 0, for k = 2, 3, . . . , q − 1. Using the techniques of the
previous examples, one can show that

ν(A) ∼ 16−q, for large q.
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Note that the intensity is of the order 2−64 when q is 16. Therefore, this
particular family of attractors will be extremely difficult to detect by direct
computer simulation for even relatively modest periods.

Example 8.5 Let X = R2, and let φa be the time 1 map of the vector field

ṙ = ar − r3,

θ̇ = rq−2 sin qθ,

where (r, θ) are polar coordinates on R2. For positive values of a, this map
has two attractors,

A ≡ {(r, θ) : r = ρ} and

A′ ≡ {(r, θ) : r = ρ and θ = (2j − 1)π/q, j = 1, 2, . . . , q},
where ρ =

√
a. Note that A is an invariant circle, A′ is a set of q fixed points,

and A′ ⊂ A. Using the techniques of the earlier examples, one can estimate
that

ν(A) ∼ ρ3 and

ν(A′) ∼ ρq−1,

for small a.

This example appears to be artificial, but it is related to supercritical
Hopf bifurcation for maps of the plane. The attractor A corresponds to
the invariant circle, while the attractor A′ corresponds to the periodic sink
with rotation number p/q. One can see that, while the invariant circle is
not too difficult to detect with direct computer simulations, even modestly
high resonances pose a problem. For example, with 64 bit arithmetic, one can
reasonably expect to detect an invariant circle with a radius of 2−20. However,
one would expect to have difficulty detecting a periodic sink of period 33 for a
radius less than 1/4. Experience has shown that these resonances are indeed
difficult to find with direct computer simulations [1].
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