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Von Zeipel’s theorem on singularities in celestial mechanics

Richard McGehee

1 Introduction

A solution of a system of ordinary differential equations is said to experience a
singularity at time t* <oo if the solution cannot be extended beyond t* A full
understanding of the nature of the singularities which can arise in solutions of the
n-body problem of classical celestial mechanics has eluded mathematics to this
day. Interest in these singularities seems to have originated with Painlevé in 1895
[6], when he asked whether all singularites are due to collisions between the
particles.

An important step towards an answer to Painlevé’s question was taken by Hugo
von Zeipel in 1908 [15]. He showed that, if the positions of all the particles
remain bounded as t approaches t* then the singularity must be due to a
collision. In other words, a noncollision singularity can occur only if the system of
particles becomes unbounded in finite time.

Von Zeipel’s paper fell into obscurity for a number of years, and recent references
to it allude to “gaps” and “errors” in the proof [14, p.431; 10, p. 15; 8, p. 312].
Although von Zeipel’s four page paper is briefer than one might ideally like, it
contains all the essential ingredients of a complete proof. Indeed, when taken in
hostorical context, it contains impressive insights.

The purpose of this paper is to translate von Zeipel’s proof into modern notation
and terminology. In so doing, this author hopes to make von Zeipel's original
ideas more readily available to current researchers and to help clarify von Zeipel’s
contribution to the theory of singularities in celestial mechanics.

2 Painlevé’s Stockholm Lectures

In the autumn of 1895, at the invitation of Mittag-Leffler and under the sponsor-
ship of OscarIl, King of Sweden and Norway, Paul Painlevé gave a series of
lectures in Stockholm. These lectures were such an important event in the scien-
tific community of Stockholm that the first lecture was attended by the king
himself. Since von Zeipel’s work on singularities was clearly inspired by that of
Painlevé, we begin by describing Painlevé’s theorems on the subject. Painlevé’s
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lecture notes were published in 1897 [6] and were reproduced in his collected
works [7].

Let m;>0 be the mass of particle i, and let g,eR> be its position. The potential
energy of this system of n particles is given by

_U(q :'“!qn)E_ s
' E;Iq;—qjl

where |+| denotes the Euclidean norm in R> The Newtonian formulation for the
motion of this system of particles can be written

m.m.
tJ

miqi=P;'U(QI""’qn)v i=1,...,n. s (1)

Here the symbol ¥, denotes the gradient with respect to the i'® variable, while the
double dot denotes the second derivative with respect to time ¢.

The potential energy fails to be defined whenever two or more of the particles
coincide. If we write

a=(q,, ..., 9,)R>,

then we can denote this singular set by

4=\ 4;;.

i<j

where

4,;={qeR)": q;=q;}. (2)
Note that U: (R?)"—4 — (0, o) is real-analytic.
If we are given an initial position g(0)e(R?)"—4 and an initial velocity ¢(0)e(R°)",
then the standard existence and uniqueness theory for ordinary differential equa-
tions gives us the existence of a unique solution ¢(t) defined for t€[0, t*), where

t*€(0, o] is chosen to be maximal. The vector q is a real analytic function of ¢,
and the point t*, if it is finite, is a singularity of this function.

Definition. If t* < oo, then the solution ¢(¢) is said to experience a singularity at t*.

In his Stockholm lectures Painlevé investigated the nature of the singularities
which can occur. He proved the following theorem, which states that the mini-
mum distance between all pairs of particles must approach zero at a singularity.
A nice proof can be found also in the book of Siegel and Moser [9]. Here we
have introduced function o: (R®)" —[0, co0) defined by
0(g)=min[g; —q,l.
i<j

Theorem 1. If q(t) experiences a singularity at t*; then g(q(t)) =0 as t > t*,

A slightly different interpretation of this theorem can be given if one notes that

0(q)=1/2d(g, 4),
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where d(q, 4) denotes the standard Euclidean distance in R>" from the point g to
the set 4. Theorem 1 states that g(¢t) > 4 as t — t*.

It 1s natural to ask whether ¢(f) must approach some definite point on 4. 4 priori,
q(t) might oscillate wildly while approaching 4, or it might become unbounded as
the distance to 4 goes to zero. If q(¢) does approach some point ¢* as t —t* then
each of the particles has some limiting position at time t* Since g*e4, at least
two of these limiting positions must coincide, which means that these particles
must collide as t—t* Painlevé called such an event a “collision”. A singularity
which is not due to a collision he called a “pseudocollision”.

Definition. Suppose that g(¢) has a singularity at ¢* This singularity is called a
collision if there exists a g*eA such that q(t)—»>g* as t—t* Otherwise, the
singularity is called a pseudocollision.

Painlevé wondered whether pseudocollisions can occur and gave credit, without a
specific reference, to Poincaré for having suggested the concept [6, p. 588]. Pain-
leve did succeed in showing that pseudocollisions cannot occur for the three-body
problem.

Theorem 2. For n=3 all singularities are collisions.

Painlevé also gave a sufficient condition for a singularity in the n-body problem
to be a collision. However, the condition does little more than simply rule out
behavior more complicated than simultaneous triple collisions and does not provide
much further insight into the nature of these singularities. Painlevé ended his
Stockholm lectures with the unresolved question of whether pseudocollisions
can exist for m>4. This question remains unresolved today, although there is
strong evidence supporting the existence of pseudocollisions [2, 5].

3 Von Zeipel’s Theorem

Edvard Hugo von Zeipel was born in Sweden in 1873, the grandson of a German
immigrant. He was educated in Stockholm and Uppsala, receiving his Ph.D. from
Uppsala University in 1904. His thesis involved a study of periodic orbits of the
third kind in the three-body problem. He studied in Paris from June 1904 through
September 1906, taking courses from Poincaré in celestial mechanics and from
Painlevé in rational mechanics [4]. It is reasonable to suppose that von Zeipel’s
interest in singularities grew out of his association with Poincaré and Painlevé,
since his paper on the subject appeared in May 1908, less than two years after he
left Paris.

Here is von Zeipel’s theorem as it appears in his paper. This author has taken the
liberty of translating it from French into English.

Theorem. If some of the particles do not tend to finite limiting positions as t
approaches t,, then one has necessarily
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lim R = co,

t—1ty

where R is the maximum of the mutual distances.

In view of the definitions given above, von Zeipel's theorem states that a singu-
larity must be due to collision if the system of particles remains bounded. In more
picturesque language we can say that the only way a pseudocollision can occur is
for the system of particles to explode to infinity in finite time.

After 1908 von Zeipel seems to have drifted away from the mathematical aspects
of celestial mechanics and into the more practical side of astronomy. He con-
tinued to work on the motions of comets and small planets, but he become more
interested in the structure and evolution of stars. He was elected to the Swedish
Royal Academy of Sciences in 1915 and was appointed to a personal chair of
astronomy at Uppsala in 1919. He served as chairman of the Swedish Astronomi-
cal Society from 1926 to 1935 and as chairman of the National Committee for
Astronomy from 1931 to 1948. In 1930 he won the Morrison prize from the
New York Academy of Sciences for his work on the evolution and constitution of
the stars. It is interesting to note that Mittag-Leffler chose von Ziepel to contribute
an article to volume 38 of Acta Mathematica, which was published in 1920 and
devoted to the work of Poincaré.

Despite von Zeipel's rather successful career, his theorem on singularities seems to
have fallen into obscurity for a number of years. In 1920 Jean Chazy published a
paper in Comptes Rendus announcing the same theorem [1]. He gave no reference
to von Zeipel’s work, so one must assume that he was completely unaware of it.
Writing in 1941, Wintner was aware of von Zeipel’s paper but was somewhat
skeptical of it [14, p. 431]. By 1970, according to Sperling, “von Zeipel’s statement
seems to be virtually unknown” [10, p. 15].

Fortunately, interest in the subject of singularities in celestial mechanics was
renewed in the early 1970’s, due largely to the work of Pollard and Saari. In 1972
Saari extended von Zeipel’s result to show that no pseudocollision can occur if
the moment of inertia is “slowly varying” [8]. In 1974 Mather and McGehee
constructed a solution of the four-body problem which becomes unbounded in
finite time [5]. However, their solution contains an infinite number of double
collisions which have been extended by an “elastic bounce” and hence is not an
example of a pseudocollision. Gerver recently has given an indication of a con-
struction of a pseudocollision for the five-body problem [2], but the details
apparently are not yet complete.

Today Painlevé question of whether pseudocollisions exist remains unresolved,
although there seems little doubt that the answer is yes. Even after this question
is answered, von Zeipel's theorem will remain one of the fundamental contri-
butions to the field.
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4 A decomposition of the system

An important element in von Zeipel’s proof is his decomposition of the moment
of inertia of the system of particles into components corresponding to subsystems.
Today this decomposition is best understood in terms of the geometry of the
space (R?)" with inner product

(@r>= Y, map),

where (*, +) denotes the standard inner product on R> The moment of inertia is
defined to be the norm induced by this inner product, i.e.,

n

I(g)=|ql*= Y, mlql*.
Pl
We denote the gradient of U with respect to this inner product by VU. That is,
VU(q) is the vector in (R3)" such that

(VU(q),p»=DU(q)p, forall pe(R®,

where DU(q): (R®)"— R* denotes the derivative of U. The equations of motion (1)
then can be written

q=VUulq). 3)

Recall that the n particles are labeled with the integers 1 through n. Denote this
set of labels by

N=41,2 v i)

If x4 is a subset of N, we can arbitrarily identify as a subsystem those particles
whose labels are in pu. The set of points on the singular set 4 corresponding to
coincidence between all the particles in the subsystem is

4,={qe(R°": q;=q; for all i, jeu}.

Points in 4, can be regarded as points of “total collapse” of the subsystem pu. If
is empty, then 4, is undefined. If u contains a single point, then A#=(R3)". If u
={i,j}, then 4,=4,;, as defined in formula (2).

Now let w be a partition of N, that is, a set of mutually disjoint subsets of N
whose union is all of N. A partition of N corresponds to a decomposition of the
total system into subsystems, each corresponding to one of the elements of the
partition. The set of points corresponding to total collapse simultaneously in each
subsystem is the linear subspace

4,=) 4,

HEW

ije?

The distinction between 4, where o is a partition of N, and 4
subset of N, should be clear from the context.

4> where u is a
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If 1 is a subset of N, then the center of mass of the corresponding subsystem is
defined as

¢4 E(Z miQi)/(Z m).

We use this physical quantity to define a linear map
T[m: (R3)n‘_)(R3)n: (RQQ)iEcgq if iEp,ECO.

It is easy to check that m, is an orthogonal projection with range 4, and
nullspace
X, ={qe(R®": Y m;q;=0 for all pew}.
icp
Thus, for each partition , (R®)" can be written as the direct sum of the orthogo-

nal subspaces 4, and X . If we write IT  =id —=, then IT, denotes the orthogo-
nal projection of (R*)" onto X . Thus we have

lgli*=ln,ql*+ I T,ql*. (4)

We digress briefly to give a physical interpretation of this last equation. We
compute that
’I(u(q)E “ﬂ:quzz Z (Z mi)]cluQ]z'
HE® lep
Thus I,(q) is the moment of inertia of a system of particles consisting of, for each

uew, a fictitious particle of mass me located at the center of mass of the
iep
subsystem corresponding to p. We also compute that

Jo(@=11,q1*= 3. J,(),

HEW

where
th(q) = z m; |q1 _c#fﬂz-
ieu

Thus J,(gq) is the moment of inertia with respect to its center of mass of the
subsystem corresponding to u. Equation (4) states that the total moment of inertia
can be decomposed into the sum of the moments of inertia of each of the
subsystems plus the moment of inertia of a system composed of a fictitious
particle at the center of mass of each subsystem.

The potential energy can be decomposed in an analogous way. If we let

1 mm;
Uj(9)={21q; —qjl
0 for i=j,

for i#j,
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then we write

U@=72. ). Uj@.

ieN jeN

When viewed as isolated from the rest of the system, the subsystem corresponding
to u has potential energy

V@=Y ¥ Uya)
ieu jeu
For a partition @ we write
Vo@= ) V() )

UEW

which is the total potential energy of all the isolated subsystems. The remaining
potential energy,

is due to the interactions between the subsystems. To be more precise, if we let

U, (@)= ;; U@ for pnv=0,

0 for u=v,
then we can write
U,(@)=2Y Y U, (7)
HEW VEW

An examination of formula (5) yields the following identity:

V. (g+2)=V,(q) forall zed,.
We therefore have that
V. (qg+m,p)=V,(q) forall pe(R>"
Differentiating with respect to p and setting p=0, we obtain
DV,(@=,=0,
which, since n_, is orthogonal, yields
n,VV,(q)=0.
Combining this last equation with (3) and (6), we obtain
nod=1,V U,(q) (8)

using which we can compute that

2

Tz lu(@®)= 2|7, d(0)1% +2<{m,q(2), VU, (q(0))>- ©)
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5 The proof of von Zeipel’s theorem

We conclude this note by translating von Zeipel’s proof into the notation devel-
oped in the previous section. The proof begins with the following lemma, which
states that the moment of inertia must approach a limit, possibly infinite, as
t=>t*,

Lemma. If q() experiences a singularity at t*, then there exists an I*€[0, oo] such
that I(q(t)) —>I* as t —t*.

This lemma is proved using Theorem 1 and a formula due to Lagrange. A nice
exposition of the details can be found in the book of Siegel and Moser [9, p. 26].
Although Wintner credits this lemma to Painlevé in his Stockholm lectures [14,
p. 434], this author can find no mention of it there. It was proved by Sundman in
1906 [11, p.8] for the case n=3 and by von Zeipel in 1908 [15] for arbitrary n.
These references are the earliest known to this author.

We now use the lemma to state and prove an equivalent version of von Zeipel’s
theorem.

Theorem. If q(f) experiences a singularity at t* and if I1(q(t)) > I*<co as t—t¥,
then there exists a q*€4 such that q(t) —q* as t > t*.

Proof. Let
a7 = () clla ),

t<t

where ¢l denotes the topological closure in (R3". Since q((t,t*)) is a nonempty
bounded set, its closure is nonempty and compact. Since 4* is written as the
nested intersection of nonempty compact sets, it is itself nonempty and compact.
Note that A* is a subset of 4 and that I(gq)=I* for all ged*.

For each partition o, define
AX=A4*n4,,.

From among all the partitions @ such that 4%+, choose one with minimal
cardinality. For the remainder of this proof, we let  denote this fixed partition.
Note that this choice assures us that all the denominators in formula (7) for U, (q)
are nonzero for all ¢ in 4* and hence that U,(qg) is defined on this set. Since 47 is
compact, there exist a neighborhood G of 4} in (R3" and a finite M such that

VU, (@) <M and KKm,q, VU, (q)p|<M  for all geG. (10)
We introduce the variables z and x by defining

z=n,qed, and x=II qeX,,.
We identify the Cartesian product of X, and 4, with their direct sum, writing

(x, z)=x+z=qe(R?".
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One of the following two cases must hold.
Case 1. 4* is not a subset of 4.
Case 2. A4* is a subset of 4.

First assume case 1. Choose an open subset B of 4, whose closure B is compact,
such that 4% =B<BcG. Denote the boundary of B by dB=B —B. For each ¢>0
define

D,={xeX,: |x| <a}.
Again let D, denote the closure and dD, denote the boundary of D,. Write
K, =D, x Bc(R3"

Since dB is compact and since 4*NdB=§, there exist a g,>0 and a t,<t* such
that

q([to, t*) N (D,, x IB)=9. (11)
Assume that g, is chosen small enough so that
K, <G. (12)

Since 4* is not a subset of 4, there exists a o€(0,0,) such that, for infinitely
many values of ¢ close to t* q(t)¢ K. Henceforth we fix ¢ at this value. Choose ty
so close to t* that

1I(q(e) —I*|<0?/12  for ¢, <t<t* (13)

Since q(t) comes infinitely often arbitrarily close to 4% as ¢t —t* g(t) must enter
and leave K infinitely often as ¢ —t* Property (11) implies that g(t) must enter
and leave via 0D, x B, so long as t>t,. We therefore can find an interval [z,, 7,]
satisfying the following conditions:

q(t)eK, for 1,<t<t,, (14)
Jo(q(zo))=J,(q(z3))=02, (15)
min J, (q(7))<¢?/2, and (16)

1, —1,<0/}/3M. (17)

Condition (16) can be met since g(t) comes arbitrarily close to 4* for values of ¢
arbitrarily close to t*. Condition (17) can be met since intervals satisfying the first
three conditions occur arbitrarily close to t*.

Now let 7 be a point in (t,,75) where I (q(f)) achieves its maximum value.
Equation (4) implies that I(g)=J,(q)+I,(g). Equations (13) and (16) imply that

1,(q(@)>I* ~7%/12,
while equations (13) and (15) imply that
L {gle)) <d*=11e4/12,



344 R. McGehee

Combining these last two inequalities, we find that

1,(q(7)—1,(q(e3)>0?/3. (18)
On the other hand, (9), (10), (12), and (14) imply that

d2
FI&)(Q(E))Z#ZM fOl‘ TOSISTS’

Since 7 is a local maximum, we therefore have that
I,(q(cs) —1,@@®) = — M(c; — 7).

Condition (17) now implies that
1,(q(@)—1,(q(z3) <a?/3,

which contradicts (18). Thus case 1 is impossible.

We have shown that case2 must hold, ie. that 4* must be a subset of 4. It
follows immediately that x(t) >0 as t —t* Furthermore, since 4*=4% G is a
neighborhood of 4% Therefore there exists a ¢, such that q(t)eG for ¢, <t<t*
Equation (8) implies that
Z2(t)=mn,VU,(q(1)),
which, when combined with (10), implies that
I1Z@l <M for t,<t<t*
It follows that z(f) must approach a limit g¥e4, as t —t* Therefore
q(t)=x(t)+z(t)»0+q* as t—t*

and the proof is complete.
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