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1. The Quadratic Family

We consider the well-studied one-parameter family of quadratic maps

of the complex plane

fo(z) = £f(z,c) = 22 +cis

where =z 1s the state variable, ¢ is the parameter, and both are
complex numbers. Holding ¢ constant, we iterate the map with respect
to z and denote the kED [terate by ft(z} . We are concerned with one

aspect of the structure of the "Mandelbrot set”

leet : EE(U} is bounded} .

=
1l

A periodic point for the map f. is a point p in € such that

f:(p} =p for some n #» 1 . The period of p is the least such positive
integer n . The EEEEE.GE p dis the finite set of all iterates of p .
The eigenvalue of p 1is the complex number {fg}'(pj « It is easy Lo
see that (fg}'{pl] = (fg)*(pz) for all Py and p, on the same
periodic orbict. Therefore we can speak of the eigenvalue of the orbit.
We say that p 1s an attracting periodic point if the eigenvalue of p

is strictly inside the unit cirele. Let

M= {c e T : f, has an attracting periocdic orhit} >

and note that M' 1is open.



A theorem of Julia [3] implies that, for each value of ¢ , £

has at most one attracting perlodic orbit and that =z = 0 1s attracted

to that orbit if it exists. Thus M' is a subset of M .

Let R be a component of M' , and let D° denote the open unit

disc. For each point ¢ in @ , define pn{c} toc be the eigenvalue of

¥

the unique attracting periodic orbit of f. . A theorem of Douady and

Hubbard [1] implies that : @ +D° 1s an analytic homeomorphism

Py *
which extends analytically to the boundary except possibly at the point

¢ where Dﬂ{c} =1 .
In this note we prove the following theorem.

THEOREM A: Let 2 be any component of M' , let lﬂ be a posi-

tive nth root of unity, and let E = p;l(luj . Then there exists a

component A of M' sgueh that
1) e e 0nh

(2) extends analytically to A , and

A
1 2. e 1
(3) py'(eq) = =0 Ay po'ley) -

The component A corresponds to a periodic orbit with peried n
times the period of the orbit corresponding to @ . This n-fold bifur-
cation is well-known, and its proof is included only as part of the
proof of Theorem A. Conclusion (3) of Theorem A 1s the "Mandelbrot N2
conjecture” [4]. More precisely, Mandelbrot conjectured that the direc-
tional derivative of |pn] in the direction of the outward normal of

K at the boundary point cq is n? times the corresponding direc-

tional derivative of |pn[ at ey - Conclusion (3) implies rhat the

boundaries of @ and A are tangent at ¢ and that this conjecture

0
of Mandelbrot's 1is true.



2. One-parameter Familles

Theorem A will be proved by showing that the family f. satisfiles
the hypotheses of a more general bifurcation theorem, which will be
stated and proved in Section 4. This generalization will have two
hypotheses of nondegeneracy. The first will be discussed in this sec—
tion and involves the dependence on the parameter. The second will be
discussed in the next section and involves only the map at the fixed

parameter value at which the bifurcation occurs.

Let F denote a family of maps parameterized by a single complex

parameter ¢ , and write

Fa(z) = F(z,c) ,

where ¥ 1is holomerphic on some open subset of € * T . The following

definition will be used later to state a generalization of Theorem A.

Definition: Assume that ZD

that F has a simple n—fold bifurcation at (zﬂ,cﬂ} if there exist

is a fixed polnt of Fcﬂ - We say

neighborhoods U of ¢, and V of =z

0 such that tie followlng two

o
conditions hold.
(1) For ¢ U , F. has a unique fixed point in V , whose aigen—
value we demote by plc) .
(2) For c €U - {cﬂ} , Fo has a unique periodic orbit of period
n in V , whose eigenvalue we denote by d(c) -

If, in addition, the following condition holds, then we say that the

bifurcation satisfies the N2-rule.

(3) @ extends to a holomorphic function on U satisfying

gfte )= n? pley) p'(ey) -




Cur plan is to give sufficient conditions for a simple n—fold
bifurcation to occur and to show that, under these conditions, a simple
n—=fold bifurcation satisfies the N2-rule. We begin by discussing the

dependence on the parameter.

If FED has a fixed point and if the elgenvalue A  at this

Zg oo 0

fixed peint is not equal to one, then the impliecit fuuction theorem
gives us a unique fixed point 2z = q(ec) which is a continuation of =z,
and which is a holomorphic function of the parameter in a neighborhood

ol ¢ In other words, g is the unique function satisfying

0
F(q(e),e) = q(e) , aley) = z5 -

Denote by plec) the eigenvalue of g{c) , i.e.

plc) = Felale)) -

If we assume that p'[cﬂ} # 0, then p maps a neighborhood of g

conformally onto a neighborhood of AD . Just to emphasize the nature

of this last assumption, we write it

"(ep) : HF{ } EEE{ ) s ( ) #0 (2.1)
p'{eq) = —— —(zg,c zn,cn) + zZn,c : :
0 (1-Xg) e 0.0 372 0:C0 3zdc 00

These considerations serve to motivate the following definfition.

Definition: Let F : L xC + € be holomorphic in a neighborhood

of the point (zD,cﬂ} in € % C . Assume that 24 is a fixed peoint

for F‘;‘jI with eigenvalue ln #1 . We say that F dis a regular para-

meterization at (zﬂ,cD} if (2.1) holds.

The theorem of Douady and Hubbard discussed In Section 1 imme-

diately yvields the following result.



LEMMA 1: Let fq.(2z) = zZ + ¢ , and assume that z, is a periodic

0
point of fcﬂ with period k and with a primitive ntht root of unity as

an eigenvalue. Let F(z,c) f%[z} . Then F 1is a regular para-

meterization at {zﬂ,cD} £

3. MNondegeneracy of the Normal Form

The second nondegeneracy hypothesis involves only a property of the

map FEG at the fixed parameter wvalue e, at which the bifurcatiom

CCCurs.

Definition: Let g satisfy g[zﬂ} = z_ and g'{zﬂ} = lD » where

0

lﬂ iz a primitive nth root of unity. We say that g has nondegenerate

normal form at Zq if (gﬂ)'{znj #0 .

In the following discussion we assume that z, = 6 . If g(0) =20

and g'(0) = AD y then we can write g as

ke

i
g(z) =Az+ ) cz' . (3.1)
0 jop 3

TE lD is a primicive nth root of unity, then a straightforward com-—
putation due to Fatow [2] shows that either g“ is the identity or

there exists a positive integer m such that

b -
g(z) =z+ ) bz, (3.2)
j=mn+l J
where b # 0 . The hypothesis that g has nondegenerate normal

mn+1

form is simply the hypothesis that m = 1 , i.e. the hypothesis that




Sy eaE - ) hjzj . (3.3)
=1

; #
where bn+1 0

The term “"normal form" in the above definition was chosen because
expansion (3.2) is intimately related to the normal form of g . We

digress briefly to discuss this relationship.

Consider a polynomial of the form

o(z) = ¢+ ) ﬁjcl - (3.4)
=2
We wish to choose ¢ so that
= : +1 +2
h() = ¢ eged(r) = At +a & + o) (3-5)

If we expand the expression ¢°h = go¢ 1in power series and equate coef-
ficients, we find that there is a unique polynomial of the form (3.4)

which satisfies (3.5). We also find that the mumber a is uniguely

determined by the coefficients hﬂ v B g erey € in expansion

(3.1). If we now take the nth iterate of both sides of (3.5), we find

that

n -1 n _— n+l n+2
hi(g) = ¢ =gﬂ¢(n}=;+nlnau+1c; +0(z )

»

However, (3.3) implies that ¢dlﬂgn°¢(cj = g“(c} + 0{£n+2} . Therefore

b =n h.a

g, 02n+1 * 5° b and a must be either both zero or both

w1l n+1
nonzero. Thus we see that g has nondegenerate normal form if and only

if the coefficient of order wntl in the normal form of g does not

vanish.

We now show that the quadratic family statisfies this second non-

degeneracy condition.



LEMMA 2: Let fo(z) = z2 + ¢ , and assume that Zq is a periedic

point of fcﬂ with period k and with a primitive nth  root of unity

0"

as an eigenvalue. Then fED has nondegenerate normal form at =z

Proof: We rely on a theorem of Fatou [2] concerning the domain of
attraction for a perliodie orbit whose eigenvalue is a root of unity.
The basic fact is the following: if g(z) 1s a rational function whose
Taylor series at the origin is g(z) =z + bz£+1 + D(z£+2) , with
h # 0 , then the domain of attraction of the origin contains &

distinet components P vr e P (called “petals"” by Thurston) for

1 £

which 0 & P, . Moreover, each P

i contalns a critical point of g .

i

Since EEE is a polynomial which is not the identity, its expan=
sion about each of the periodic points has the form (3.2). Therefore,

each point e in the periodic orbit has mn invariant domains Di :

sany Di , each containing a critical point of Ezk , and such that,
mn
: i k3 . i1 gk ;
o * &
for y €D, , £70y) + x, as J + = , Thus ﬂR‘l Diz 1f 13 # 1p

or &1 # &9 . If D 1is the invariant domain Di containing 0 (the

is fJ(D] for some

critical point of f“g ), then each Di

0 %<3 <kn . By counting, we conclude that mkn % kn and hence that
m =1 . Thus the normal form for fEu is nondegenerate at =z, , and

the proof is complete.
fi. The Simple n-fold Bifurcation

We conclude this paper with the following theorem, which sgpecifies

sufficient conditions for a one-parameter family to have a simple n-fold



bifurcation. Tn view of Lemmas 1 and 2, this theorem immediately

implies Theorem A.

THEOREM B: Let F be holomorphic on a neighborhood of

(z3i€y) €€ X E . Assume that =z, is a fixed point for F. with a
RIS Lla ) B e q e

o

primitive nth root of unity as its eigenvalue, and assume that F is a

regular parameterization at {Zgrﬂg} » Assume alsc that the normal form

af Then F has a simple n—fold bifur-

0"

af Fcﬂ is nondegenerate at =z

cation at {zﬂ,cﬂ} which satisfies the ﬂz—rule.

Proof: Let lﬂ denote the eigenvalue of the fixed point Zg for

e Since lﬂ ¥ 1 , we know that Zq

F

is part of a holomorphic family

of fixed points =z q{e) . Therefore we suffer no loss of generality
by assuming that gq(cg) = 0 for all c , i.e. that Fo(0) =0 for all
¢ . The hypothesis that F 1is a regular parameterization implies that
the eigenvalue Fé(ﬂ} and ¢ are related by a conformal homeomorphism
on a small open set. It will be convenient to introduce a new parameter

E related to ¢ by

Fa(0) = Aj(1+e) .

The previous remark Insures that € and ¢ are related by a conformal
homeomorphism. Tt therefore suffices to prove Theorem B for a family of

the fornm

Fe(z) = A, (1+€)z + ) & L), (4.1)
j=2

Let U amd ¥V be neighborhoods of the origin such that F : V xU + &

is holomorphic.

We now write the nth iterate of Feg as



Fa(z) = (1+)"z + ) b,
j=2

Tne considerations of the previous section imply that
bj{ﬂ} = md e
The hypothesis that FD has nondegenerate normal form implies that

20 .
B i 0

4 periodic point of Fg of period n will be a nontrivial fixed

(e)z3 . (h.2)

5 n = n n
point of Fg , i.e. a nonzerco solution of Fglz) =z « Sinee Fg(0) =10

tor all £ dn! I, uafz g} = %—FE(z] -~ 1 is holomorphic on V * U .
Note that
n 5 j-1 n k1
u(z,€) = (1+e) -1+ |} b (€)= + B oo(E)e 00z ) - (Ae3)
=2 j n+l

Let

T = {(z,8) €V xU : u(z,€) = 0} .

ne easily checks that

(z,e) € T = {(0,0)} <=> F%{z} =z and: z+0 . (4.4)

Cenote the two projections of [ onto V and U by

L PRI S o R N S B
: M. & Pty EY 8,

Alsc, let

Mg [ﬁ;l(a}} e

k|
If =z ds a periodic point with period u for Fg , then (4.4)

implies that (z,e) € I' . We will have shown that T has a simple
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n=fold bifurcation at (0,0) once we have established that, for each

e ¥ 0, Ar consists of exactly one perlodic orbit of pericd n for

Fe

Using (4.3) we see that %%{D,ﬂ} =n # 0 . The implicit function

theorem therefore gives ug a function ¥ : V >+ U such that
I = {(z,8) 8¥ %0 : € = YD} .

Of course, we may have to shrink U and V . HNote that

ﬂzl{z} = (z,¥(z)) -

Again using (4.3) we compute that

b 0
¥(2) =—-—“"~‘-ii3—z“+m:zﬂ1) : (4.5)

Therefore we can agaln shrink U and V¥V , if necessary, so that
¥ : V+U is an n—fold covering with a branch at 0 . Note that

Y = W2°W;1 and hence that Ag = Y_I{E} . Therefore, for € # 0

Az consists of exactly n points,

Since Fg and Fg commute, the family F induces a map F, or

' defined by

F*(Z1E] = (FE_EZ}:E} -

Using =z as a coordinate eon T we can write in this coordinate as

G : V +0T defined by
= -1
G(z) = (T, °F,°™, )(2) = F(z,Y(z)) .

One easily computes that G(D) = 0 and that G'(0) = Fé(ﬁ) = lﬂ ;

Since T, is invariant under F_ , Y = wznwzl iz invariant under G .



Since lefﬁJ consists of exactly n points for € # 0 and since lD
is a primitive ntb root of unity, AMAg = T_I{E} can only be a periecdic
orbit for G of pericd mn . Since Glhg = Fgfha s Mg ids a periodic
orbit for Fg of period n , and hence F has a simple n-fold bifuf-

cation.at (0,0) .

We have only left to show that this bifurcation satisfies the
Nzrrule. Let (L,g) e T , with € # 0 , We have just seen that ¢
lies on the unique periodic orbit of period n for Fg in V . The
eigenvalue of this orbit is just @(g,e) = {Fg}'{;} - Since it is well-
defined along the orbit, ¥ : T + C projects to a functicn
c:U=-{0} +C 8o that ¥ = g, . Since T is an n—fold covering of

U with a branch at the origin, the implicit function theorem implies

that o is holomorphic on U - {0} .

Using equation (4.2) we compute that

(Fe)'(2) = (+e)™ + ) b,
=2

() zj_l .

Combining this equation with (4.5) and recalling that hj{G} =0 for

j=2,...,n , we find thar

"H(L,E) =1 - nzs + D{a;"ﬂ]

-

Therefore ¢ extends to a continmuous, and hence holomorphic, functlon

on U , with a(0) =1 and g"(0) = - ng » From equation {4.1) we sece

that p(Eg)

Fé(ﬂ} = HD{L+E) and hence that p(0) = p'(0) = lﬂ

Therefore o'{0) = - n2 p{0) p'(0) , and the proof is complete.
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