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§1. Introduction. Poincaré introduced the notion of a homoclinic point in
the third volume of his book on celestial mechanics [11]. The simplest nontrivial
example of a homoclinic point can be described as follows. Consider a dif-
feomorphism of the Euclidean plane to itself with the origin fixed. Assume that
the Jacobian of the mapping at the origin has two real eigenvalues, one with
modulus less than unity, the other with modulus greater than unity. The stable
manifold theorem applied to this fixed point gives a smooth invariant curve,
called the stable manifold of the point, characterized as the set of points tending
asymptotically to the origin under iterates of the map. Similarly the set of
points tending asymptotically to the origin under iterates of the inverse of the
map forms a smooth curve, called the unstable manifold. An intersection of the
stable and unstable manifolds at a point p # 0 is called a ‘‘homoclinic point.’’ If
the intersection is transverse, the homoclinic point is called ‘‘non-degenerate.”’

Many authors have studied homoclinic points, including Poincaré [11], G. D.
Birkhoff [2], and Smale [13]. An exposition of much of the work, including the
background for this paper, can be found in Moser’s book [9]. Stated roughly,
near a non-degenerate homoclinic point there can be found wild recursive or-
bits. More specifically, there is a Cantor set on which the mapping behaves like
a sequence shift on an infinite number of symbols [9]. Such behavior we loosely
refer to as ‘‘stochastic behavior.”

Homoclinic orbits can also be defined for a periodic orbit of a flow. In this
case, an orbit is called homoclinic if it is asymptotic both forward and back-
ward to the same periodic orbit. It is called non-degenerate if the stable and
unstable manifolds intersect transversely along the homoclinic orbit. Stochas-
tic behavior such as described above exists for this situation.

More generally, consider an invariant set I for a smooth flow on a manifold
M. We shall say a point x € M is ‘‘biasymptotic to I'’ if w(x) C I, and a(x) C I,
but x &€ I, where w(x) is the omega-limit set of x and a(x) is its alpha-limit set. A
natural question that one can ask is whether nearby stochastic behavior must
be associated with a non-degenerate biasymptotic orbit. The answer is no. De-
vaney has exhibited examples where I is a single point and the stable and un-
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stable manifolds intersect transversally, yet there is no stochastic behavior [3].
In Example 4.1 below, we exhibit an invariant set I diffeomorphic to a three
sphere, whose stable and unstable manifolds intersect transversally, but for
which the flow has no stochastic behavior.

We define a point x € M to be ‘‘homoclinic’’ to [ if x is biasymptotic to [ and
if a(x) = w(x). Easton [4] has examined the situation where I is an invariant
three-sphere and x is homoclinic to I with w(x) an invariant torus contained in /.
He shows that there exists stochastic behavior of orbits near the orbit of x pro-
vided that I is foliated by invariant tori near w(x) and the rotation numbers on
these tori change.

In §5 and §6 below we examine the situation where I is an invariant three-
sphere foliated by periodic solutions and x is homoclinic to I with w(x) an
invariant circle in I. We give sufficient conditions for the existence of stochastic
behavior near the orbit of x.

The model flow that we study in this paper is special and is closely related to
the flow of the planar three-body problem of celestial mechanics, as we discuss
in the next section. We feel that an understanding of the orbit structure of
Hamiltonian perturbations of the model flow is essential to understanding cer-
tain orbit structures in the three-body problem and is particularly relevant to
proving the existence of capture and oscillatory orbits for this problem.

In this paper we study only perturbations of the model flow which vanish in a
neighborhood of the invariant three sphere. This is a limitation on the appli-
cability of our work.

§2. Relation to celestial mechanics. As mentioned above, Poincaré was led
to the notion of a homoclinic point by his work in celestial mechanics. Our
study here is also motivated by a problem in celestial mechanics, namely the
existence of so-called ‘‘oscillatory’’ motions in the three-body problem.
Roughly speaking, an orbit of the three-body problem is called ‘‘oscillatory’’ if
the lim sup of the particle separations is infinite, but the lim inf is finite.

Sitnikov [12] first proved the existence of oscillatory orbits in a special case
of the restricted three-body problem. Alexeev [1] extended the work and re-
lated it to homoclinic phenomena. Sitnikov and Alexeev showed that oscilla-
tory orbits are related to ‘‘parabolic’’ orbits, i.e., orbits which approach infinity
with velocity asymptotic to zero. McGehee [8] observed that one can introduce
a periodic orbit at infinity whose stable and unstable manifolds are the para-
bolic orbits. Moser [9] showed that oscillatory orbits are a consequence of the
existence of an orbit homoclinic to the periodic orbit at infinity.

The entire program as outlined above is contained in Moser’s book [9] and
has been carried out only for Sitnikov’s special case of the three-body problem.

The present paper represents work on the question of whether the same pro-
gram can be carried out for the planar three-body problem. The basic difficulty
comes from the higher dimensions. Sitnikov’s example is one of two degrees of
freedom. Thus an energy surface is three dimensional. The planar three-body
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problem, after removal of the integrals and symmetries, is a problem of three
degrees of freedom. Thus an energy surface is five dimensional.

For Sitnikov’s problem, one introduces at infinity a single periodic orbit. Its
stable and unstable manifolds are two dimensional. For the planar three-body
problem, one can make similar transformations. However, in this case the cor-
responding object introduced at infinity is an invariant three-sphere. One can
think of this as follows: Suppose that the energy of the system is negative and
that two of the particles are close together forming a binary system, while the
third is escaping to infinity. Along a parabolic orbit, it will escape with asymp-
totically zero velocity. Thus, in the limit, all of the energy of the system will be
in the binary system. No other parameters of the binary will be fixed. Thus the
limiting system will be a two-body problem with fixed negative energy. After a
Levi-Civita [7] regularization of the double collision, the flow is equivalent to
the Hopf flow on a three-sphere, i.e. all orbits are periodic. So far, all this can
be done with transformations similar to those in [8].

For Sitnikov’s example, the existence of oscillatory solutions follows from
the existence of a non-degenerate orbit homoclinic to the periodic orbit at in-
finity. We ask the same question for the planar three-body problem: Does the
existence of a non-degenerate orbit biasymptotic to the three-sphere at infinity
imply the existence of oscillatory solutions? ‘‘Non-degenerate’’ means that the
stable and unstable manifolds to the three-sphere (i.e. the set of parabolic or-
bits) intersect transversely along the biasymptotic points. Unfortunately, we do
now know whether the set of parabolic orbits forms a manifold. The difficulty is
that the characteristic multipliers for each periodic orbit in the three-sphere are
all one. However, the same problem exists for Sitnikov’s example, and the
difficulty can be overcome there [8]. By analogy, one can expect that the sets of
parabolic orbits form smooth manifolds for the planar three-body problem.

One should then rephrase the question of the previous paragraph as follows:
Suppose one could prove for the planar problem that the asymptotic sets to the
three-sphere at infinity did indeed form smooth manifolds. Suppose further that
one could prove that these stable and unstable manifolds intersected trans-
versally. Could one then conclude the existence of oscillatory solutions?

To study this question, we consider a model problem. We consider a flow on
a five dimensional manifold with an invariant three-sphere on which all orbits
are periodic. Our model problem is simple enough so that the stable and un-
stable manifolds to the three-sphere can be adequately described. We then con-
struct an example (Example 4.1 below) of such a flow, with the stable and
unstable manifolds intersecting transversally, but with no oscillatory orbits.
This example indicates that the answer to the question of the previous para-
graph is negative. However, our example is not Hamiltonian and in fact cannot
be made Hamiltonian, as we show in Section 8. The question remains unre-
solved.

However, that is the wrong question to ask. As mentioned in the in-
troduction, we feel that the existence of a homoclinic point is more relevant
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than the existence of a biasymptotic point. A homoclinic point is asymptotic in
both time directions to the same periodic orbit at infinity. However now it is not
clear what should be the appropriate nondegeneracy condition. The stable and
unstable manifolds of the periodic orbit will each be two dimensional sub-
manifolds of the five dimensional energy surface. They cannot intersect trans-
versally. Hence we cannot define a non-degenerate homoclinic point as a trans-
versal intersection of these stable and unstable manifolds.

We were led to the conditions given below. Roughly speaking, we wanted to
define a map that would take the a-limit set of a biasymptotic point to its e-limit
set. A fixed point of this map x (defined below in 5.8) determines a homoclinic
orbit. Our definition of a ‘‘transverse’’ homoclinic point (Definition 5.4) gives
sufficient conditions to define this map. Our definition of a ‘‘non-degenerate”
homoclinic point (Definition 5.9) gives sufficient conditions to prove that the
existence of such a homoclinic point is insured under certain perturbations
(Theorem 7.7). The homoclinic point of the perturbed system will in general be
homoclinic to a different periodic orbit in the invariant three-sphere.

Next we wanted to show the existence of oscillatory orbits. We were then led
to our definition of ‘‘hyperbolic’’ homoclinic orbit (Definition 5.9). In Theorem
6.11 below, we show that the existence of a hyperbolic homoclinic orbit implies
the existence of oscillatory orbits.

We can now ask the following question: suppose one could prove for the
planar three-body problem that the stable and unstable manifolds to the three-
sphere at infinity exist and are smooth. Suppose further that one could show
the existence of a hyperbolic homoclinic orbit. Could one then conclude the
existence of oscillatory orbits? The answer to this question requires a careful
analysis of the three-body flow near infinity. In our model problem we have
assumed that the flow near the three-sphere is a product flow and this simplifies
the analysis. However, we consider Theorem 6.11 to be a strong indication that
the answer is yes.

Assuming the answer is yes, one can ask whether it would ever be possible to
check in the three-body problem all of the conditions necessary for the appli-
cation of this theorem.

For a start, one needs to know quite a bit about the stable and unstable
manifolds to the three-sphere, i.e. the parabolic orbits; it may be possible to
generalize the techniques of [8] to apply to this case. Next, one needs to know
the existence of a homoclinic orbit. That may be quite easy, in view of the
Hamiltonian structure and some work of Moser [10] (see Section 8 below). For
certain values of the energy and angular momentum, two of the particles al-
ways remain close together relative to their distance to the third [5]. Thus the
problem can be regarded as a small perturbation of two decoupled two-body
problems. This decoupled problem is completely integrable and the techniques
used in Section 8 should allow one to conclude the existence of homoclinic
orbits for the three-body problem (for these values of energy and angular mo-
mentum).
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Finally, there is the problem of checking the condition of hyperbolicity. This
is undoubtedly the major difficulty. Since the map x is symplectic, it is not
even ‘‘generically’’ hyperbolic. Hence there is no reason to expect that this
condition holds for the three-body problem. However, it seems likely to us that
if x were elliptic with a twist condition, then one could still prove the existence
of oscillatory orbits. Since generically symplectic maps are either hyperbolic or
elliptic with a twist, one could then expect that oscillatory solutions exist for
the planar three-body problem. However, it is probably very difficult to check
the appropriate conditions on the map y.

§3. The model flow perturbation problems. In this section we establish no-
tation and describe the problems which we discuss in the following sections.

3.1 Notation: Let v = (v;, v,) € IR?and let z = (z,, z,) € C? and define lizll =
z,Z, + z,Z, where the bar denotes complex conjugation. We treat IR? X C?as a
real six dimensional vector space with symplectic structure determined by the
two-form

Q = dvdv, + i) dZ,dzy + dZ,dz,).

Choose a smooth function H? : IR? X €% — IR! with
H® (v, 2) = G(v) + % Izl? — 2
which satisfies the following conditions:

3.2 The Hamiltonian system of differential equations

vy = ng = Gvg
v, = —HY) = —G,,
z, = =2iH} = —iz,
z, = —2iH}, = —iz,

determined by H° and ) generates a smooth flow ¢°: IR? X €% X IR —» IR? X C2.
Since the equations for v and for z are decoupled, the flow ¢° may be written

(v, 2), 1) = Co(v, 1), *p(z, 1)).
We refer to this flow as the model flow.

3.3 Zero is a regular value of H°.

Consequently M° = {(v, z) € IR? X C%: H%v, z) = 0} is a smooth five-dimen-
sional manifold. M° is invariant since H® is constant on orbits of ¢° and hence
¢° is a flow on M°,
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34 H'%U, z) = v,v, + %Hzll2 — 2 provided that max(v,, v,) = 1.

3.5 There exists a smooth function T': 2, — (0, ©) such that ¢° : R— Qisa
diffeomorphism where

S.={v,2)EM’: v, =1, vl < 1}
R={v,z,) E3, X R": 0=t =T(v,z)}
0 = ¢"(R).

3.6 The map ¢°: 3, — IR? X €2 defined by (v, z) = ¢°((v, z), T(v, z)) is a

diffeomorphism of 3, onto 2; where

S, ={v,z) EM°: v, =1, lv,l < 1}

Define N = {(v, z) € M°: max(lv,, lv,]) = 1} and define a projection 7 : IR? X
@2 — R2 by 7(v, z) = v. Let n = w(N), ¢ = m(Q), o, = m(Z,), and 7, = m(Zy).
Figure 3.1 below pictures these sets together with orbits of the flow '¢(v, ).

Va
A

S

=

Figure 3.1

As we discussed in §2 an analysis of the three-body problem requires first
techniques by which to study perturbations of the model flow ¢° and hence of
the diffeomorphism y°.

3.7 The model flow perturbation problem: Write x = (v, z) € IR? X C? and
denote by F°(x) the vector field of (3.2). Let f : IR? X €2 — IR? X C? be smooth.
Consider the vector field x = F(x) = F°(x) + f(x). Choose f so that conditions
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(3.8) and (3.9) hold. Denote the associated flow by ¢ : (IR? X C?) X R - IR? X
2.

3.8 The support of fis a subset of Q.

3.9 There exists a smooth function / : IR> X €2 — IR!, such that
H(x) = Hx) + h(x)

is an integral for the vector field F. Furthermore, require that the support of 4 is
a subset of Q, and zero is a regular value of H.
This last condition implies that:

310 M = {x € IR? X C?: H(x) = 0} is a five dimensional invariant sub-
manifold and that ¢ is a flow on M. Note that M and M°, and the corresponding
vector fields, coincide except over Q. Therefore N, 3, and 3, are subsets of M,
and ¢ and ¢° coincide except over Q. In particular, ¢ and ¢° coincide on N.

The model flow perturbation problem is the problem of studying the orbit
structure of the flow ¢ on M.

3.11 The model flow Hamiltonian perturbation problem: Here we assume
that the function H of 3.9 is the Hamiltonian function for the vector field F, i.e.
F = (H, —H,,, —2i H;, —2i H;). The problem again is to study the orbit
structure of the flow ¢.

We shall refer to 3.10 as the ‘‘perturbation problem’ and to 3.11 as the
‘‘Hamiltonian perturbation problem.”” Henceforth, unless otherwise specified,
¢ will denote a flow on M as specified in 3.10.

3.12 Define $® = {(v, z) € M : v = 0}. Then S§3 is an isolated invariant set for
¢, and N is an isolating block for S3. Since

S§% ={0, z) € R* x C%: lizll =2},
it is a three dimensional sphere.
Following standard notation, we write
w(x) = N{C I (o(x, [, ©))) : t = 0},

a(x) = NA{C I (plx, (==, 1])) : 1 = O}

3.13 Definition. Letx € M satisfy w(x) N §% # Fand w(x) N (M — N) # <.
Then the orbit through x is called w-oscillatory. If w is replaced by «, then the
orbit is called a-oscillatory. If the orbit is either a- or w-oscillatory, it is called
oscillatory.

3.14 Definition. x € M is called a capture point if a(x) # &, a(x) C S? and
o(x) N §% = &. The orbit through x is called a capture orbit.
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§4. Biasymptotic orbits. In this section we define biasymptotic orbits and
we give an example of a perturbation of the model flow for which there exist
nondegenerate biasymptotic orbits and for which there are no oscillatory or-
bits. Throughout this section ¢ will denote a perturbation of the model flow
which satisfies the conditions 3.8 and 3.9.

4.1 Definition. x € M is called a biasymptotic point if o(x) C 3, a(x) C §3
but x & S3. The orbit through x is called a biasymptotic orbit.

4.2 Definitions.
A% = {((vy, v2),2) € N v, = 0, v, > 0}
Az = {((vy, v2), 2) E N: vy = 0, =0, > 0}
A, =AtUAG A, = AT U AL
W= ={p(x, 1) : x € A%, t € RY}.
Wi = {ox, 1) : x € A%, t € R}
W, = Wiu W, W, = Wi U W,
The sets W, and W, are called the stable and unstable manifolds of S3 respec-
tively and the sets A, and A, are called the local stable and unstable manifolds

of 53 respectively. In view of condition 3.4 the sets above can be characterized
by the following equalities:

As = {x € N: ¢(x, (0, ®)) C N}
A, ={x € N: ¢(x, (—x, 0)) C N}
W,={x€EM: wkx)C S
W,={x€E M: alx) C §%.

It follows that x is a biasymptotic point if and only if x € W, N W, — §3.
Condition 3.4 implies that W, N W, = W% N W, It follows from the character-
izations above that each orbit in W intersects a, exactly once and each orbit in
Wi intersects a, exactly once,

a;, = AtN 3;and a, = AT N 3,

=4

Then each biasymptotic orbit intersects a, in a unique point.

4.3 Definition. A local section (for the flow ¢) is a codimension 1 sub-
manifold of M which is everywhere transverse to the vector field F. Let 3, and
3., be local sections. Let D be an open subset of 3, let T: D — R! be smooth and
define Y(x) = ¢(x, T(x)) for x € D. Suppose that y(D) C 3, and that ¢ : D —
(D) is a diffeomorphism. Then the triple (, T, D) is called a section map from
3, to 2. If T and D are clear from the context, then they will be omitted from
the notation and ¢ will be referred to as the section map.
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The following proposition is standard and is a consequence of the implicit
function theorem.

4.4 Proposition. Suppose 3, and 3, are local sections and that ¢(xy, t,) =
Xo, Wwhere x; € 2, X, € 3, and t, € R. Then there exists a section map (¢, T, D)
from 2, to 2y with x; € D, T(x,) = t,, and Y(x,) = xo. Furthermore, s is unique
up to domain.

Remark. (Y°, T, 3,) is the unique section map from 3, to 3, for the model
flow ¢°, where (y°, T, 3,,) is defined in 3.5 and 3.6.

The following lemma is a consequence of Proposition 4.4,

4.5 Lemma. Let p € a,. Then pis a biasymptotic point if and only if there
exists (for ¢) a section map (§, T, D) from 2., to 3, such that p € D and §(p) €
as. Furthermore, { is unique up to domain.

4.6 Definition. Let ¢s be a section map from 3, to 3. Define

Ay = ‘l’_l(as)’ As = Y(a,)
I'n=a,NA,, Iy =a,N A,

Remarks. (1) Since ¢ is a diffeomorphism, A, and A, are three dimensional
submanifolds of %, and 3, (possibly empty).

(2) T', and I, consist entirely of biasymptotic points and (I',) = I';.

(3) Ay, A, T, and I'; all depend on .

4.7 Definition. Let p € a, be a biasymptotic point, let i be given by Lemma
4.5, and let A, be defined above. We say that p is a non-degenerate biasymptot-
ic point if a, and A, intersect transversally at P (as subsets of 3,).

Remarks. (1) Consequently, a, and A; also intersect transversally at ¥(p).

(2) T, and Ty are two dimensional submanifolds (near p and ¢(p)) of %, and
3.

(3) Non-degenerate biasymptotic points persist under perturbations. In fact,
I', and T persist.

(4) For the model flow all biasymptotic points are degenerate.

We are now ready to construct a perturbation of the model flow for which
there exist nondegenerate biasymptotic points and for which there are no oscil-
latory orbits.

4.8 Notation. Let

2t ={((vy, v2), 2) € 2.t vy >0}
3% = {((vy, v2), 2) € 252 v, > 0}
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Q = {((vla 1)2), Z) € M: (vls DZ) € Oq}'

Conditions 3.5, 3.8, and 3.9 imply that orbits of ¢ enter Q through 3., and exit
from Q through 3, ;. We require that ¢ be a sufficiently small perturbation of the
model flow ¢° that all orbits of ¢ cross Q from 3, to 3, ; in finite time.

The following proposition will be used to prove that the flow constructed
below has no w-oscillatory orbits.

4.9 Proposition. Suppose that the orbit of ¢ through x € M is w-oscillatory.
Then there exist real numbers s;, t; for j = 1,2,3, .. .with s; < t; < 85+, 5uch
that for each j, ¢(x, [s;, t;]) C Q and o(x, [t;, 554+ 1]) C N.

Proof. We may assume without loss of generality that x € 3. Let s; = 0
and let ¢, denote the time it takes x to cross Q. Then ¢(x, ;) € 2%. Since x is »-
oscillatory the point ¢(x, ¢,) must cross N in a finite time 7. Let s, = t; + 7. By
condition 3.4 we must have ¢(x, 5,) € 3} or else x would not be w-oscillatory.
Continue in the same way to define the times #,, s,, - - . This completes the
proof.

4.10 Definitions. Define g : C2 > IR' by g(z) = 2 — —; lIzII2. Define 3, =

{z € €2 : Ig(z)| < 1}. Choose 0 < ¢; < ¢, < 1 and choose a smooth function
B:[—1,1]— [0, 1] such that B(¢) = 1if Ifl = ¢, and B(z) = 0 if Itl = c,. Choose
€ > 0 and define A : 3 — 3 by A(zy, z,) = (a(z)z;, a '(z)z,) where a(z) =
1+ €B(g(z)). Define A : 3 — 3, by Az) = ((1, g(2)), z). A is a diffeomorphism of
3, onto 3. Finally, define K : 3, = 3, by K = M\ % Let C; = {((1, vy), 2) €
24 i lvgl < ¢;}. Then C, C C, and

_ xifxel, - C,
k0 = {1y ot e )

where x = ((1, vy), z) and z' = ((1 + €)z,, (1 + €)7z,).

The following example can be constructed using techniques similar to those
for suspending a diffeomorphism to a flow.

4.11 Example. Choose the vector field F in 3.7 so that conditions 3.8 and
3.9 are satisfied with 4 = 0. In addition choose F so that ¢ = ° > K where ¢ is
the flow of F and (¢, 7, %,) is the section map from 3, to 3, determined by .
The vector field F is not Hamiltonian since the section map  is not symplectic.
We show in §8 that it is impossible to construct a Hamiltonian flow having the
properties of ¢.

4.12 Proposition. {(a,) N a, is a torus. Furthermore §'(a,) intersects a,
transversally.
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Proof. From the definition it follows that
a, N Yy la,) = {(v,2) ER* X C2: v = (1, 0), Iz, + Iz, = 4,
(1 + €z + (1 + €)%z,l2 = 4},

Hence Iz, =2(1 + (1 + e)Z)'%and
lzol =21 + &)1 + (1 + e)2)“%.
Thus a, N $~'(a,) is by inspection a torus. The proof of transversality is omitted.
4.13 Proposition. The flow ¢ has no oscillatory orbits.

Proof. We show that there are no w-oscillatory orbits. The proof for a-
oscillatory is similar.

Suppose that x € M is a point on an w-oscillatory orbit. Let s; and #; be given
by Proposition 4.9, Let x; = ¢(x, s;) € 33. Write

x; = ((1, vd), (2, z9)).
Then
zit U = (1 + eB(vd)lzl,
lzi* U = (1 + eB(vd))Mzil.

Hence

2k = 123 [] (1 + eBvd),
i=1

k—1
Izl = 1z3l T] (1 + eB(vd)~".
i=1

Since 2 < Iz{I? + 12§12 < 4,

T+ o))

converges. Therefore there exists j* such that j = j* = v{ > ¢,. By Proposition
4.9,

e(x, 1) € Q UA{((vy, v2), 2) € N : 005> ¢4},

for ¢t > t;. Therefore w(x) N §2 = &, which is a contradiction. Hence no orbit is
w-oscillatory and the proof is complete.

§5. Homoclinic orbits. We suppose throughout this section that ¢ is a per-
turbation of the model flow which satisfies conditions 3.8 and 3.9. We define
homoclinic orbits and we define local surfaces of section and section maps for
the flow ¢ which will be used later to establish the existence of oscillatory and
capture orbits.
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5.1 Definition. p € M is called a homoclinic point if a(p) = o(p) C S3 but
p &€ S§3. A homoclinic orbit is an orbit of a homoclinic point.

Since the flow ¢ agrees with the model flow on N it follows that the alpha and
omega limit sets of a homoclinic point consist of the same periodic orbit in §3.
The flow ¢ on 52 is the Hopf flow and thus S consists entirely of periodic orbits
of period 27.

5.2 Notation. LetS2={(w,y)€C X IR': Iwl* + y*> = 4}and define 7 : N —
52 by
(v, z) = 2 11zIl72(22,2,, 12,12 — 1251%).
The following proposition is an immediate consequence of the definitions
above.

5.3 Proposition.

(a) ¢(x, [0, 1)) C N = w(p(x, 1)) = m(x).

(b) x € A;> 7(x) = m(w(x)).

(c) x € Ay > m(x) = m(a(x)).

(d) p € ayis a homoclinic point if and only if w(p) = w(Y(p)) where s is the
section map of ¢ from 3, to 3.

5.4 Definition. Let p € a, be a homoclinic point, let ¢ = ¥(p) and let s =
7(p). We say that p is a transverse homoclinic point if

(a) p is a non-degenerate biasymptotic point,

(b) Da(p) : T,I', = T,S? is an isomorphism,

(¢) Dm(q) : T,I'y — T,S? is an isomorphism, where the sets I', and I'; are
defined in 4.6.

The following proposition is a consequence of the inverse function theorem.

5.6 Proposition. Let p € a, be a transverse homoclinic point and let q =
U(). Then w: T, — S%2and 7 : Ty — S%are local diffeomorphisms near p and q
respectively.

Restrict T, and Ty, if necessary, so that 7", and T, are diffeomorphisms
and so that (TI",) = T,. Define

5.7 Sy =a(l), Sy =m(Ty).

Then define the diffeomorphism x so that the following diagram commutes
Fu L FS

5.8 7 L om
Sy X S

Note that, if p € a, is a homoclinic point and if s = 7 (p), then x(s) = s.
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5.9 Definition. Letp € a, be atransverse homoclinic point and let s = 7 (p).
If Dx(s) does not have eigenvalue +1, then we shall call p a non-degenerate
homoclinic point. If Dx(s) is hyperbolic, then we shall call p a hyperbolic homo-
clinic point.

So far we have used the sections X, and 3, to describe homoclinic points. It
will be convenient in what follows to introduce a section 2’ which is transverse
to the flow on §°.

For the remainder of this section, p € a, will be a fixed homoclinic point and
Y, T, @) will be the section map from 3, to 3, given by Lemma 4.5. Let ¢, =
T(p). If necessary, we may rotate the coordinate system on S° so that

o(p) = alp) ={v, (2,2)) EM:v =0, z; = 0}.

5.10 Definition. Let s, = (0, —2) € S? and let s, = (0, +2) € S% Then
w(p) = m(w(p)) = m(a(p)) = s,. Define the local section

3 = {(v, (z1, z5)) € int (N) : Re(z,) > 0 and Im(z,) = 0}.
Note that every orbit except one on S hits X', The exceptional orbit is
{(va (zla 22)) E M: v = 0, 22 = 0}’

which projects to s;.

In what follows, the reader is asked to bear with the notation which places a
prime in the upper left hand corner of every symbol. Soon a new coordinate
system will be introduced on 3’ and the primes will be dropped.

Let ®’ denote the section map obtained by following the flow in N from one
crossing of 3’ to the next. The domain of @' is

Do ={((vy, vy), 2) € 3 vyl < \7Y,
where A = ¢2". The section map ©®' can be written
0O'((vy, va), 2) = ((Avy, N0y), 2).
The maximal invariant set for ®’ in 3’ is the set I' = §3 N 3.
5.11 Proposition. = : I — S — {s,} is a diffeomorphism.

Proof. One checks that the inverse is
1 1
7' (w, y) = (0, (2 — y) *w, (2 = y)?).
Recall the local asymptotic sets A% and A}, defined in 4.2. Let
o, =AtN Y,
a, =ALN 3.

These sets are the positive branches of the stable and unstable manifolds of I’
under iterates of ®'. Note that
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o = {(v1, v), 2) € 31 v, = O},

oy = {((vy, vy), 2) € X' 1 v, = O}
We now turn our attention to the section map ¢ which describes the flow
outside the block N. Follow the flow backward from p until it hits X’ at A’ and
forward from yi(p) until it hits 3’ at k'. From the properties of the flow in N, we

see that these intersections must occur in time not exceeding 27r. That is, there
exist 1, t* € (0, 27r] such that

W=opp, —t)Ea,C3,
k' = o(W(p), t*) € a; C X',
Proposition 4.4 implies that there exist section maps (¢, T-, @) from 3’ to 2,
and (Y*, T+, 9%) from 3, to 3’ such that 7-(h') = +~ and T*(y(p)) = t*. By
Proposition 5.3, we have e ¢y~ = 7 = 7 o y*. Restrict 9, P, and 9, if neces-
sary, so that ¢y=(27) = 9 and $(2) = 9%, and relabel ' = P~. Now define
VP -3 by ¥ = ytoyoy,
and define
T:9->RbyT'=T++T+ T

Then (W', T', 9') is a section map from 3’ to X'. Note that ¥’'(h') = k', and that
7w(h') = w(k') = w(p) = s,.
Now define

L, =¥y "(a; N V(@)
Li=¥V'(a, N D)
G,=a,NL,
G,=a, N L.
One easily checks that
Y (Ly) = Ay, ¥7(G) = Ty,
¥tAy) = L, ¢*(T) = G
Since ¥~ and Y+ are diffeomorphisms, all the properties of homoclinic points
can be stated in terms of L;,, L}, G, and G;. For example, if p is a non-degener-
ate biasymptotic point, then L, and «,, intersect transversally, L; and o} inter-
sect transversally, and G, and G, are two dimensional manifolds.

For the remainder of this section, we assume that p is a transverse homo-
clinic point. The above comments, together with 5.7 and 5.11 imply:

5.12 Proposition. If p is a transverse homoclinic point, then
w: G,— S, and

w: Gy — S,
are diffeomorphisms.
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Also, 5.8 and 5.11 imply that the following diagram commutes

r; ¥ T
5.13 | I =
s, % S,

We now place a coordinate system on 3’ which will facilitate our computa-
tions in the next section. Make the standard identification of IR with C and let
L : IR?> - C be areal linear isomorphism. We shall specify L below, but for now
it is arbitrary. Let

3 ={((vy, vo), ) E RZX IR2: vyl < 1, vyl < 1,4 — 20,0, — |Lul®> > 0}.
Define

a:3-> 3" (v, u) > (v, (21, 20)),
1
where z, = Lu, and z, = (4 — 2v,0, — |Lul?)2. One can check that o is a
diffeomorphism.

The sets I', o}, ay,, @', L, L}, G,, and G}, together with the points 4’ and k',
when transformed by o~ to 3, will be denoted by the same symbol without the
prime (see Figure 5.1).

The section map @’ in the new coordinates becomes ® = ¢~'0’'c and can be
written

5.14 O((vy, vy), ) = ((Avy, N710y), u).

\~
—
=

Il e
\
<

Figure 5.1
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The section map V' transforms to ¥ with domain 9, and the following diagram
commutes

[/
5.15 o1 1o

9 X 3

We now wish to establish that the projection map 7 on 3’ can be thought of
as projection onto the last two coordinates of 3. To this end, define
p: 11— R?: (v, u) > u, and define
U=p() ={u € R?: |Lul <2}

Since I = {(v, u) € % : v = 0}, we see that p : I —» U is a diffcomorphism.
Therefore Proposition 5.11 implies the existence of a diffeomorphism a which
makes the following diagram commute

< I
5.16 o I
U <« 8§ - {5}
In fact, one can compute that
alu) = ((4 — \Lu®)"Lu, Lul® — 2),
and therefore we have

5.17 a(0) = s, and Da(0)i = (2Lu, 0).

Now extend p to 2 by the formula
1

p((vy, v2), u) = (1 - %vlvz)_ 2.

From the definition of 7 and from 5.14 one can see that the following diagram
commutes:

.Y
5.18 o Vo
“, S2 - {Sl}.

Proposition 5.11 now implies:

5.19 Proposition. If p is a transverse homoclinic point, then p
G,— p(G,) C Uand p: Gy, — p(G,) C U are diffeomorphisms.
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We now transform the orbit map x by the diffeomorphism a to obtain the new
orbit map X. Thus the following diagram commutes

\g)u i» S2 - {Sl}
5.20 al T a
(S X U

By combining diagrams (5.13), (5.15), (5.18), and (5.20), we obtain the follow-
ing commutative diagram of diffeomorphisms

G, X G,
5.21 ol Lo
g X q

where ¥ = a~1(%,) = p(G,). Letting
A =DV¥(h), K=DX(0)

and differentiating diagram 5.21 we obtain the following commutative diagram

I,G, 4 TG,
5.22 ol P
Rz % IR%.
Denoting A = [a;;] and A™! = [b;;], we have the following:

5.23 Proposition. If p is a transverse homoclinic point, then ay, # 0 and
by # 0.

Proof. We prove only that a,; # 0. The proof for b,, is similar.
Note first that

TwLy = {((vy, vy), (uy, u)) @ @110y + A0y + ayauy + agtty, = 0},
Thau = {((vla 1)2), (uls u2)) : Uy = O}'

Since p is a transverse homoclinic point, L, and «, intersect transversally at 4.
Therefore

4| Gu Qi Gi3 Ay
A——[O 1 0 0]

has rank 1. Since G, = L, N «,, we have that

T,G, = {(v, u) : A(v, u) = 0}.
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By Proposition (5.19), p : T,G, — IR? is an isomorphism. Hence the map
(A, p) : R* - IR? X IR? has trivial null space. But this map is represented by
the matrix

Ay Qup Qg3 Gyy

) 0 10 0
@e={4 01 o
0 0 0 1

Hence a,; # 0, and the proof is complete.

Differentiating 5.20, we obtain the diagram

T,8* 2%, T,8°
5.23 pa®) T 1 D)
IR? X, IR?

Since T,,S? = {(w, y) € C X R : y = 0}, we may represent Dx(s,) as
DX(SO)W = (K,wa 0)7

where K’ : € — C is a real linear isomorphism and may be thought of as a
2 X 2 matrix. By (5.17),

K =L"K'L.

If we assume that p is a hyperbolic homoclinic point, then K’ will have two
distinct real eigenvalues, one with absolute value greater than one, the other
with absolute value less than one. We write these eigenvalues s,u? and s,u3
where u; > 1> u, > 0and s, = =1, 5, = =1. Hence we can choose L so that

— siui 0
5.24 K [ 0 sz#g].

§6 Oscillation and capture. In this section we prove the existence of oscilla-
tory and capture orbits for a flow ¢ which is a perturbation of the model flow
provided that there exists a hyperbolic homoclinic orbit of ¢. First we define a
sequence of sets B, C 2, which we call windows and we assume for each n that
w, : B, — 3 is a homeomorphism. In 6.4 we give sufficient conditions so that
there exists a sequence of points x, € B, such that w,(x,) = x, +, for each n.
We apply this result to construct oscillatory and capture orbits by constructing
sequences of windows and defining w, to be either ® or ¢ restricted to B,. We
find a sequence of points x, € B, such that w,(x,) = x, + , for each n. Each of
the points o(x,) lies on the same orbit of ¢ and we show, depending on the
choice of the windows, that this is either an oscillatory or a capture orbit.
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6.1 Notation: For & = (&4, - - -, &) € IR¥, let

€l = max {I&)], - - -, 1&}
F={t e R*: gl < 1}

arr={¢£ € R*: gl = 1}.
For our purposes,

§ € 14’ g = (§1, §2’ §3’ §4) = (gl’ §2)

where £' = (£,, &) and & = (&, &)).
Define

G ={E, &) e e =1},
aE = {(&, &) e I el = 1.

6.2 Definition. A window is a triple (B, b~, b*), where B C X, b~, b* C B,
such that there exists a homeomorphism B : (I*, 9~ I*, o*I*) — (B, b~, b*),
called a standard window homeomorphism from I* to B.

If (B, b, b*) is a window we may drop the b~ and b* and simply refer to B as
the window. In such a case, we shall write the standard window homeo-
morphism B as simply B:I* — B, understanding that B(d~I*) = b~ and
B(o1I*) = b+.

Suppose that (B, b~, b*) is a window and w : B— w(b) C ¥ is a homeo-
morphism. By w(B) we mean the window (w(B), w(b™), w(b*)). Note that, if
B :I* - B is a standard window homeomorphism, then we 8 : I* = w(B) is
also a standard window homeomorphism.

6.3 Definition. Window B is said to be correctly aligned with window C if
there exist standard window homeomorphisms 8 : I* - Band y : I* = C and
an embedding v : P X > — > X I? such that

B(n', m*) = y(£', &) & (', &) = v(&, 7).

6.4 Theorem. For each integer n let {B,, b, by} be a window and let
wy, . B, = w,(B,) be a homeomorphism such that w,(B,) is correctly aligned
with B,, . 1. Then for each n there exists x, € B, such that w,(x,) = Xy + ;.

In Section 9 below we give more general definitions of window and correct
alignment. Theorem 6.4 is a special case of Theorem 9.6 as is shown in Corol-
lary 9.8. We now proceed to the construction of the windows which will be
used to prove oscillation and capture.

Assume that p is a hyperbolic homoclinic point and that L is chosen so that
(5.24) holds. Recall that A = DW¥(h). Assume that

Vix)=k+Ax—h) for x€ Z.
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We make this assumption to simplify the computations presented below. In
view of our hypotheses on the structure of the flow in N, this assumption is
relatively harmless.

Write

(ay, az, as, as) =A(1, 0, 0, 0)
(by, by, bg, b)) =A7Y(0, 1,0, 0).
Proposition (5.23) implies that a, # 0 and b, # 0. Introduce the four vectors:
w; =(1,0,0,0)
w, = (b5, 0, u7t, 0)
wy = (by, by, b3, by)
wy = u3(bg, 0,0, 1).

Since b, # 0, these vectors form a basis for IR*. Choose b; and bg so that w, and
wy are in T,G,. Then (5.22) and (5.24) imply that

Aw2 = /"1(09 as, 81, 0)9
AW4 = (Os Qg 0’ SZM‘Z)'

where a; and ag are determined by the relation Aw,, Aw, € T;G,. We also have
that

Aw, = (a4, a,, a3, a;), and Aw; = (0, 1, 0, 0).
Note that & and k£ can be written
h=(h 00,0, and k= (0,%,0,0),
where 0 < A < 1,0 < k < 1. Choose A so that
h<A<l1, k<A<l
Then choose & > 0 so that
8(1 + lbsl + lbgl) < 1 — AA™!, and
8(1 + lasl + lag) < 1 — hA™".

Finally, choose an integer N > 0 so that all eight of the following inequalities
hold

A2V < §lb,)
1by\=2Y < 8lbyl(u3! — 1)
1bgA =2V < 8lbol(1 — 7Y
lb, — babg\"2 < 1byl[1 — hA™ — &(1 + |bsl + 1bgl)]

A2V < Blayl

6.5
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lagA=2 < 8la,l(u, — 1)
lagJN2N < 8la,I(1 — po)

las — siazas A" < la[1 — kA= — 8(1 + lasl + lag)].
We now construct 2N + 1 windows B=¥, - - - B~1, B® B!, - - - BV as follows:

Bt ={((vy, vy), u) €3 : o = AN~V vyl = ANV~ F_llull = A}

(6.6)

A standard window homeomorphism for each of these is given by
gk : I* — B¥
Bk(ﬂl, N2> M3» 7}4) = A()\k—N’fh, AN kT)z, s, OM4).

Recall the section map © given by 5.14 and note that @(B¥) = B+ 1,
We now construct an addition window B* = 8*(I*) by defining a standard
window homeomorphism g* : I* — 3, by

B*(é1, &3, &3, €2) = h + BA(E Wy + Ewp + L + Egwy).
6.7 Proposition. BY is correctly aligned with B*.
Proof. An elementary computation shows that 8V(n) = B8*(¢) if and only if
n1 = hA™' + 8(&, + bsés + bens) + b3\ (by — bybe)ms
M2 = pi'é + (8by)TNTVbyms
& = (8by) '\
€1 = pa(—(8b2) " A"2bims + Ma).

These equations define the function v(¢,, &, ms, 1) By inspection, v is a linear
isomorphism plus a constant. Estimates (6.5) show that »(I*) C I* and the proof
is complete.

6.8 Proposition. V(B*) is correctly aligned with B™".

Proof. Another elementary computation shows that (¥ o 8*)(¢) = B™N(n) if
and only if

& = (8a) '\,
& = sip7'(—(8a) "N Magn; + M)
M3 = kA~ + 8(¢&; + siasms + Sagky) + aiN"N(a, — s1azas)m,
Mg = Sopoés + (8a)) A" Paym,.

As above, estimates (6.6) imply that these equations define an embedding
I* - I*, and the proof is complete.

6.9 Proposition. For —N = k = N — 1, 0(B*)is correctly aligned with B*.
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Proof. © o B¥(n) = B*(¢) if and only if
M = N, M2 = &, €= A", and ¢ =,

These equations define an embedding I* — I, and the proof is complete.

Remark. Note that, since @(B¥) = Bx*+1 @(B*) and B**! are correctly
aligned.

6.10 Lemma. Given any bi-infinite sequence of integers my, k € Z, with
my = 2N + 1, there exist points x;, € B*, such that

O™ (W (xp) = xpc 4 1.
Proof. Define M, for k € 7ZZ, by
M, =0, M, + my = My, 4.

Then let
B* if j=0
BMk+j= BN if j'_—l,"‘,mk_'ZN
B¥*ti-me if j=mpy —2N+ 1, m— 1
[ if j=0
MR I if j=1,m—1J

By Propositions 6.7, 6.8, and 6.9, B,, w, satisfy the hypotheses of Theorem 6.4.
Hence there exist y, € B, such that w,(y,) = y, .+ 1. Letting x, = y,, completes
the proof.

As discussed in Moser’s book [9], one can also consider finite or semi-infinite
sequences {m,} beginning or ending with the symbol «. If, for some k' = 0,
myy = o, while m;, < o, k < k', then define

Bj = B—N, if J > Mk”
w; = @, if j > Mk"

One then concludes that @™ ~ (W (x,)) = x; 4 , for k < k', while @(¥(x,)) € 3
for every j = 0. Therefore ¥(x,/) € a,, and the orbit through o(x;/) is asymptot-
ic to % as t — . If, for some k' < 0, my = o, while m,, < o, k > k', then
define

BJ—_—BN_I, if j<Mk’+1
Wj=®, if j<Mk’+l'

One then concludes that @™ ~ Y(W(x;)) = x4 for k > k', while @ (x; ) €3
for every j = 0. Therefore x; 4 1 € oy, and the orbit through o (x; 4 ;) is asymp-
totic to S® as t — —x. Note that, if the sequence begins and ends with o, then
the corresponding orbit is biasymptotic.
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6.11 Theorem. If ¢ is a perturbation of the model flow which has a hyper-
bolic homoclinic orbit, then it has oscillatory orbits.

Proof. Choose my;, with 2N + 1 = m; < «, so that lim sup m; = . Let

k — o

x; be given by Lemma 6.10. Then, for arbitrarily large values of ¢, the orbit
through o(x,) stays in N for an arbitrarily large interval of time. Therefore
w(o(xy) N 82 # &. Since the orbit through o(x,) leaves N infinitely often,
w(v(xy)) N M — N # . By Definition 3.13, the orbit through o(x,) is oscilla-
tory, and the proof is complete.

6.12 Theorem. If ¢ has a hyperbolic homoclinic orbit, then it has capture
orbits.

Proof. Fix M = 2N + 1. Choose m,, so that 2N + 1 = m,, = M for k > 0
and let m, = . Let x, be given by Lemma 6.10. Since m, = ©, a(c(x,) € S°.
Since m,;, = M for k > 0, the orbit through o(x,) remains bounded away from 53
as t — o, Therefore w(o(xy)) N S® = &, so a(x,) is a capture orbit by Definition
3.19, and the proof is complete.

§7 A perturbation theorem. In this section, we show that the existence of a
non-degenerate homoclinic point remains under small perturbations. The new
homoclinic point may be asymptotic to a periodic orbit different from the one to
which the unperturbed homoclinic point is asymptotic. Before proving the the-
orem, we develop a characterization of homoclinic points.

For x = (v, z) € N, let e(x) = (0, iz) € IR? X C2. The vector field e has the
following properties:

7.1 e(x) €« T,M foreach x &€ N and

7.2 e(x) € ker(Dm(x)) foreach x € N.

7.3 Let x € a,. Then e(x) € T,a,, and Dn(x)IT,a, is surjective.

7.4 Let x € a,. Then e(x) € T,a,, and Dmn(x)IT,a,is surjective.
As a consequence of the above properties, we have:

7.5 Proposition. Let p € a, be a homoclinic point, let {s be given by Lemma
4.5, and let q = Y(p). Then p is a transverse homoclinic point if and only if

(a) e(p) € T,A,, and

(b) e(q) &€ T,A,.

We are now ready to prove a perturbation result. Consider the following
differential equation

7.6 X =F(x) + fex)
with integral
H(x) = H%x) + h(x),
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where, for each ¢, f; and A, satisfy the hypotheses 3.8 and 3.9. Assume that f.
and A, vary smoothly with €, and let ¢, be the flow on M, associated with 7.6.

7.7 Theorem. Suppose that p, € a, is a non-degenerate homoclinic point
for ¢,. Then, for each small €, there is a non-degenerate homoclinic point p,
for ¢.. Furthermore, p, varies smoothly with e.

Proof. Let (Y, T, &) be the section map from 3, to 3 obtained by applying
Lemma 4.5 to ¢, and p,. A standard use of the implicit function theorem tells us
that, by possibly restricting to smaller 9, there is a section map . : 2 — 2, for
the flow ¢, for small enough €. Furthermore, . varies smoothly with €. Let

A«; = ’«I’_el(as)a A§ = lpe(“u)-

Since A and a,, and A? and q,, intersect transversally, so do A§ and a,, and A
and ay, for small enough €. Let

Is = As N a,, I's = AS N a,.

For each ¢, I and I are two-dimensional manifolds varying smoothly with e.
Furthermore, every point on I’ is a non-degenerate biasymptotic point for ¢..
Applying Proposition 7.5 to ¢, and p,, we have that

e(po) € T, I'%.
Hence, for small enough ¢,
e(x) € T, Iy foreach x eIk

Therefore, by 7.2, Dm(x)| T, [ is an isomorphism. Hence y, = (7i[)~! exists on
some neighborhood S, of s, = w(p,) in S2. Furthermore, vy, varies smoothly
with e.

Now define

Xezsu—)sza Xe = TP © Y.
By hypothesis, Dx,(so) does not have eigenvalue 1. Hence, by the implicit func-
tion theorem, there is an s € S, such that x.(s¢) — sc and Dx.(s¢) does not have

eigenvalue 1. By Proposition 5.6, p. = v.(s.) is a homoclinic point. By construc-
tion it is non-degenerate, and the proof is complete.

§8 Hamiltonian perturbations. In this section we show that if ¢ is a Hamil-
tonian perturbation of the model flow then ¢ has a homoclinic orbit. We also
show that an arbitrary perturbation of the model flow need not have this prop-
erty.

8.1 Proposition. Example 4.11 with € > 0 has no homoclinic points.

Proof. Suppose p € a, is a homoclinic point. By arguments similar to those
of Proposition 4.9 there exist n = 1 and real numbers s;and #;forj =0, 1, . . .,
n—1,withs;=0and s, <t <s,, ,sothat o(p,[s; ) C Q, (P, [1;, 5, ]
C N,and p' = Q(p, t,_ 1) € a,.
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As in the proof of Proposition 4.13. Write
<P(P, s}) = (la g(zj)a Zj)’ fOI' .] = Oa 1’ ce s T 1’ P’ = (1, g(zn), zn)_

Thus y, = p, ¥;+1 = (6™'Yo)(y;) and y, = p’. Since p is a homoclinic point
w(p) = w(p'). Hence there exists a real number 6 such that ¢®z° = z*. There-
fore 129 = 1z and 1zJ = 1z§. However, we have

n
1z% = 1z9 H (1 + €B(g(z%)).
i=1
Since B(gq(z%) = 1 and B is non-negative, the product above must be greater
than one. Thus 1z8 = I1z3l = 0 and 1zJl > 0. The product

n

ﬂl (1 + eB(g(2) "z

i=
is less than one. This contradicts the fact that

Iz = 128l ﬁ (1 + €B(g(z))™

i=1
and therefore p cannot be a homoclinic point. This completes the proof.

The following theorem is a special case of a theorem proved by J. Moser [10].

8.2 Theorem. Let P be a symplectic manifold and let K : P — IR! be a
Hamiltonian function with 0 as a regular value. Let A = K='(0) and let ® be
the flow on P generated by the Hamiltonian vector field associated with K. If
vy : P— Pis an exact symplectic map which is sufficiently close to the identity,
then there exist p € A and a real number tclose to zero such that ®(y(p), t) = p.

The proof of this theorem uses ideas which go back to Poincaré and which
are developed in a coordinate free way by Weinstein [14]. We use this theorem
to prove the following:

8.3 Theorem. If ¢ is a sufficiently small Hamiltonian perturbation of the
model flow, then ¢ has a homoclinic orbit.

Proof. 3, is a symplectic manifold with 2-form QI3 where () is the 2-form
on IR? x C2 given by

Q = dv,dv, + 20)Ndz,dz, + dZydz,).

Define K : 3, — R' by K((1, g(z)), z) = (1/2)llzll> — 2. Then K~*(0) = a,. Now
let ¢ : 3, — 3, denote the section map of ¢. Since ¢ is a Hamiltonian flow the
section map  is exact symplectic. In particular y*QI3, = QI3,. Since ¢ is a
small perturbation of ¢°, ¢ is a small perturbation of . Define y = (y°)~*y. Thus
vy is an exact symplectic map of X, which is close to the identity. Therefore by
Theorem 8.2 there exists p € q, and ¢t € R! such that px(y(p), {) = p where ¢k
is the flow generated by the Hamiltonian vector field associated with K.
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It remains to show that p is a homoclinic point. Let p = ((1, 0), z). Then
7(p) = ‘PK(p’ t) = ((19 0)’ e_itz)'

Hence (p) = $%ex(p, 1)) = ¢°((1, 0), e7z). It follows that w(y(s)) =

71, 0), e¥z)) = w(p). Therefore by 5.3, p is a homoclinic point. This com-
pletes the proof.

§9. A theorem on windows. Let (X, d) be a metric space.

9.1 Definition. A window is a collection (B, b*, b~, u, v) with B a compact
subset of X, with b*, b~ closed subsets of dB such that B = b* U b, and with
w € H*B, b*) and v € H/(B, b™) non-trivial Alexander cohomology classes
(with integer coefficients) for some k and ¢.

9.2 Definition. Let (B,, b4, by, ua, v,) for n = 1,2 be windows. Define
B,, = B, N B,, b*, = b* N B, and b7, = B; N b3. Then window B, intersects
window B, correctly if By N b C b, and b7 N B, C b, if b, U (By — Byy) is
closed and if by, U (B, — By,) is closed. It follows that 4By, = b, U by,
b3 C bY, U (B, — By,), and b7 C b7, U (B, — By,). Figure 9.1 below shows
windows intersecting correctly.

B2

Figure 9.1

9.3 Definition. Suppose that window B, intersects window B, correctly. Let
Ji, * * +, ks denote inclusion maps between the pairs of spaces indicated below.

By, b%) 2o (B, b%y) 2 (Bob%, U (B, — BY) 2 (By, bY)
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(By, b3) <L (B, b)) 2% (By, b3 U (B, — By) < (B,, b7).

By the strong excision property for Alexander cohomology [15, p. 318] the
maps j% and k% are isomorphisms of the appropriate cohomology groups.
Define

J* : H¥B,, b}) — H*(B,, b})
by J* = j4(%)"Y*. Define
K* : HY(B,, b3) — H(B,, b?)
by K* = k%(k%)~'k*%. Define
piz = i) and v = Kipy).

Then (B12, b+1-2, b’;z, V12, ”’12) iS a WindOW.

9.4 Definition. Window B, correctly aligns with window B, if window B,
intersects window B, correctly and J*(u,) = *u, and K*(v,) = *v,.

9.5 Lemmal. Suppose that (B,, b}, by, pn, vo)for n = 1, 2, 3 are windows
such that B, correctly aligns with B, and B, correctly aligns with Bs;. Then
window B, correctly aligns with window B;.

Proof. Let B;; N By; = Byys. Then
B—lan23=BlnbEnB3cBlﬂanb3=b-123.
Blznb;3=Blnb;nB3CbtnanB3=b.‘i23.

Thus the first condition that B,, intersects B,; correctly is satisfied. Now
b%a3 U (By; — Byys) = [bY; U (By — Byy)] N B and thus by U (Byy — Byys) is
closed. Similarly b7,3 U (B;; — Big3) is closed and this verifies that B,, inter-

sects B, correctly. To show that J*(w,5) = =+ u,3 consider the commutative dia-
gram

H*(B,,, b%;) — H*(B,, b%; U (B, — Byy)) = H*(B,, b}) — H¥(Bas, b}s)

N /

H¥*(Bi23, blss) = H¥(Bys, by U (Byz — Bizs))

where all the homomorphisms are induced from inclusion maps or excision
isomorphisms. It follows from the definitions of w, .3, and the homo-
morphisms J* between appropriate groups, and the commutativity of the above
diagram that J*(u,5) = *u.;. One similarly shows that K*(v,3) = *vy,. This
completes the proof.

9.6 Theorem. Let (B,, b}, by, pa, v,) for n € Z be a biinfinite sequence of
windows in X. Suppose for each nthat f, is a homeomorphism of B, into X such



238 R. W. EASTON & R. McGEHEE

that the window f,(B,) correctly aligns with B, . ;. Suppose that the cup prod-
uct py U vy is a non-zero element of H**¢(B,, 0B,). Then there exists a se-
quence of points x, € B, such that f,(x;) = x, . 1 for each n.

Proof. For n=0 define C"={x€EBy:fro- - °ofs(x) € By,, for
k=1,---,n—1}, and E* = {x EBy:fZL o -+ o fZl(x) € B_, for
k=1, - -, n}. It is sufficient to show that C* N E" # & for each n = 0. Con-
sider the commutative diagram

Hk(Bo, bJ(')) X HZ(BO» T)) P Hk(Bo, Bo - En) X Hk(Bo, Bo - Cn)
LU Ju
Hk+ I(Bo, aBo) 4—‘1- Hk+ 1(B(), Bo - C” ﬂ En)

where the vertical homomorphisms are cup product homomorphisms and the
horizontal homomorphisms are induced from inclusion maps. To show that
C" N E" is non-empty it is sufficient to show that u, X v, is in the range of «
since commutativity of the diagram implies that u, U v, is in the range of 8 and
therefore H* * Y(B,, B, — C" N E") is non-trivial.

Let the notation c.a.w. stand for the phrase ‘‘correctly aligns with’’. We will
show that C* and E" are windows such that E* c.a.w. B, and B, c.a.w. C".
Suppose this is true for the moment. Then we have the following commutative
diagram

HXE", e"*) — H*(B,, e"* U (B, — E™) - H*(B,, b}).

/xy"{

Hk(Bo, Bo - En)

Since E™ c.a.w. B, we have u, in the image of H*(E", ¢"*) under the composi-
tion of the horizontal homomorphisms. It follows that u, is in the range of a*. A
similar argument shows that v, is in the range of a% : H‘(B,, B, — C") — H‘
(By, bg) where a, is the inclusion map of (B,, b3) into (B,B, — C"). Therefore
Mo X v, is in the image of a = (a%, x%).

It remains to show that E* and C" are correctly aligned windows. From its
definition, E' = f_,(B_;) N B,. We have f_,(B_,) c.a.w. B, and B, c.a.w. B,.
Hence by Lemma 1 E! is a window and E' c.a.w. B,. Define E_; = f-1(E'). We
have f_,(B_,) c.a.w. f_,(B_,) and f_,(B_,) c.a.w. B,. Hence by Lemma 1 f_,(B_,)
c.a.w. E! and therefore B_, c.a.w. E_;. Define E_, = f=}o -« - o f~1(E?) and as
an induction hypothesis suppose that E* ~'c.a.w. Byand B_,, ; c.a.w. E_,, ;.
Then f_(E_,) = f_,(B_,) N E_,,,. We have f_,(B_,) c.a.w. B_,,;and B_, .,
caw. E_,,,. Hence by Lemma 1, f_,(E_,) is a window and f_(E_,) c.a.w.
E_,. . Therefore E_, + f-}(E_,) is a window and also EY c.a.w. Ef ~ 1 since this
pair of windows is the homeomorphic image of the pair f_,(E_,) and E_, .. ;. By
induction we have E? ~ ! c.a.w. B,. Hence by Lemma 1 E¢ c.a.w. B,. Since f_,
(B-¢) c.a.w. B_,, , and by induction B_, , ; c.a.w. E_,, ; Lemma 1 implies that
Soe(B-¢) c.a.w. f_,(E_,) and therefore B_, c.a.w. E_,. This completes the induc-
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tion argument showing that E” is a window such that E* c.a.w. B,. A similar
argument shows that C” is a window such that B, c.a.w. C*. This completes the
proof.

9.7 Proposition. If (B,, b}, by, un, v,) are windows for n = 1, 2 such that
B, correctly aligns with B, according to the definition of §6, then B, correctly
aligns with B, under the present definition.

Proof. LetB,: I* > B, be the standard window homeomorphisms of §6 for
n = 1, 2. Then using the notation of §6 there exists an imbedding y : I* — I*
such that B,(¢!, £€2) = y(n', n?) if and only if (¢!, %) = y(n?, ¢2). To show that
b1 N B, C b3 suppose that B,(£*, £%) € b7 N B,. Also suppose that 1£2 < 1.
Then B,(¢, ¢°) = B.(m', n*) and I¢'l = 1. Since (¢, n*) = y(n', &) and y is an
imbedding it follows that (!, £2) € 3I*. Therefore In'l = 1 and B(¢?, &%) € bs.
Since b, is closed it follows from the continuity of g8, that 8,(¢£!, £2) € b3 pro-
vided that [ = 1 and B,(£*, £€%) € B,. Hence b7 N B, C b3. Similarly it can be
shown that B, N b} C bT.

Next we must show that b, U (B, — B,,) is closed. Suppose not. Then there
exists a limit point g of this set which does not belong to it. Hence q is a limit
point of B, — B;, and it follows that g € 9(By,) = b%, U b71,. Since g & b,
choose a convex neighborhood W of g in B, such that W N b} = . Since gisa
limit point of B, — B, there exists a point s € W with r € B,. Since g € 9B,
there exists a point s € W N int B;,. The line segment joining r and s must
intersect 9B, at an interior point of B,. By the choice of W this intersection
point belongs to b7 contradicting the fact that b7 N B, C b;. Therefore
b%s U (B; — Bys) is closed. Similarly one shows that b7, U (B, — B;,) is closed
and hence B, intersects B, correctly.

It remains to show that J*(u;) = *u, and K*(u,;) = *v,. The groups
H?(B,, b}) and H*B,, b;) are isomorphic to the integers. Thus it is sufficient
to show that J* and K* are isomorphisms. The inclusion map
iy : (Bys, b)) — (By, bY) is a relative homeomorphism and hence j, is an iso-
morphism [ ]. j¥ is known to be an isomorphism by the strong excision proper-
ty of Alexander cohomology. It follows from the five lemma applied to the
exact sequences of the pairs (B,, b}) and (B,, b%, U (B, — By,)) that j% is an
isomorphism provided that the inclusion map of 4% into b%, U (B, — Bj,) in-
duces an isomorphism at the cohomology level. Thus it is sufficient to show
that b3 is a deformation retract of b, U (B, — B;,).

Choose g, € int By, say gy = B(&}, £). Define R = {q € By, : g = By(£", &)
for some ¢£' € I*}. B3Y(R) is the graph of a continuous function g : 2 — P
where g(n') = m, o y(&', &), and where m,(¢', n?) = n? defines the projection
7. It follows that b7 is a deformation retract of B, — R. It also follows from the
definition of R that b%, U (B, — B;,) C B, — R and therefore b3 is a deforma-
tion retract of b, U (b, — By,). This completes the proof.

9.8 Corollary. Theorem 6.4 now follows from Theorem 9.6 and the above
proposition.
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Remarks. The definition of correct alignment given in Section 6 does not
have the transitivity property of Lemma 1. However if the standard window
homeomorphisms 3, and 8, have range R* and satisfy certain Lipshitz condi-
tions then Lemma 1 can be established and Theorem 9.6 can be proven without
using algebraic topology. For a result in this spirit see [4].
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