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In this paper we develop a mathematical model in which any number of 
competing species can coexist on four resources which regenerate according to 
an algebraic relationship. We show that previous attempts to prove that II 
species cannot coexist on fewer that n resources (the “competitive exclusion 
principle”) all make use of the very restrictive assumption that the specific 
growth rates of all competing species are linear functions of resource densities. 
When this restriction is relaxed, it becomes possible to find situations in which n 
species can coexist on fewer than n resources. On the basis of this and other 
observations we conclude that the competitive exclusion principle should be 
considered to apply only to coexistence at fixed densities. 

1. INTRODUCTION 

Volterra (1928) was apparently the first to use a mathematical model to 
suggest that the indefinite coexistence of two or more species limited by the 
same resource is impossible. This theme has been expanded by several authors 
into the statements that n species cannot coexist on fewer than n resources 
{MacArthur and Levins, 1964; Levins, 1968) or in fewer than n “niches” 
(Rescigno and Richardson, 1965), or most recently, on fewer than n “factors” 
(Levin, 1970). 

Within the context of his model, Volterra proved a very strong result: that as 
time goes to infinity, all species except one will approach extinction. Rescigno and 
Richardson (1965) and Levin (1970) h ave attempted to provide equally strong 
statements in the case of multiple resources: they have attempted to show that 
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whenever n species compete for fewer than n resources (factors), at least one 
species must approach extinction. 

Unfortunately, these attempts to prove that n species cannot coexist on fewer 
than n resources (factors) all make use of the very restrictive assumption that the 
specific growth rates of all competing species are linear functions of resource 
(factor) densities. In this paper we show that when this linearity restriction is 
relaxed, it becomes possible to find situations in which n species can indeed 
coexist on fewer than n resources. 

We begin with a derivation of Volterra’s original model. Postulate the existence 
of m species N, , i = l,..., m, competing for the same resource R. Assume that 
the specific growth rate of each species increases linearly with the amount of 
resource present so that 

(1 /Ni)(dNi/dt) = yiR - ui , iz 1 ,..., m. (1) 

Next assume that the amount of resource available to any competitor at time t 
is diminished by the presence of the competitors so that at any instant 

R = &ax - F(N, ,..., NJ, (2) 

where F(N, ,..., N,,) is an unbounded increasing function of the population 
densities N, . Substituting (2) into (1) and replacing yiRmits - ci by ci yields 
Volterra’s original equations 

dNi/dt = Ni[q - y,F(N, ,..., NT,!)]. (3) 

Volterra showed that as t + co the species with the largest value of ci/yi will 
approach a finite nonzero density and the remaining species will all approach 
extinction. 

Several simplifying assumptions are implicit in the above model. (i) The 
competitors are totally resource-limited: Their specific growth rates are functions 
of R alone, not of the Ni . (ii) There is no age structure or spatial patterning 
of competitor populations. (iii) The resource is uniform inquality. For example, 
if the resource consists of particles of food, these are uniform in size and 
nutritional value. (iv) There is no explicit time dependence to the interaction 
either in terms of time-dependent interaction parameters or external forcing, 
and there are no time lags. Coexistence has been shown to be possible in many 
cases where one or more of these assumptions are violated (Hutchinson, 1961; 
Haigh and Maynard Smith, 1972; Stewart and Levin, 1973; Koch, 1974a). 

Two other assumptions have received less attention. These assumptions are (v) 
that the resource available at time t is a function of the population densities of 
the competitors at time t (cf. Eq. Z), and (vi) that the specific growth rate of each 
competitor is a linear function of resource density. Previous work (Koch, 1974b; 
McGehee and Armstrong, 1976) has shown that if both restrictions (v) and (vi) 
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are relaxed simultaneously, so that the resource regenerates according to a 
differential equation (relaxing condition [v]) and the growth rates of the com- 
petitors are not linear functions of resource density (relaxing condition [vi]), 
then the coexistence of two competitors on one resource is indeed possible. 
Zicarelli (1975) has extended this result to the case of any number of species on 
one resource. 

In the above studies, both conditions (v) and (vi) have been relaxed simul- 
taneously. It is therefore of considerable interest to note that the coexistence of n 
species on fewer than n resources can be obtained even if condition (v), which 
requires the resource to regenerate according to an algebraic relationship, 
remains intact. The proof of this assertion is the subject of the following section. 

It therefore appears that the linearity restriction (vi) on competitor growth 
rates is by itself of critical importance to any proof of the competitive exclusion 
principIe. 

2. COEXISTENCE OF ANY NUMBER OF SPECIES ON 
FOUR CONSERVATIVE RESOURCES 

2.1. Definitions of Coexistence, Persistence. and Competitive Exclusion 

Our basic assumption is that the population dynamics of a community 
consisting of n species is modeled by a system of differential equations of the form 

ki = Xifi(Xl )...) xn), i = I,..., n. (4) 

Here xi is the density of species i and fi(xl ,..., x,) is its specific growth rate. 
In terms of this model we can give two definitions of “coexistence” and “per- 
sistence.” We shall make the somewhat arbitrary distinction that persistence is 
a property of communities while coexistence is a property of species. 

DEFINITION 1. System (4) is said to exhibit persistence at fixed densities if it 
has an asymptotically stable equilibrium point (%r ,..., Q with Z~ > 0, i = 
1 ,..., n. 

If each species starts near its equilibrium density & , then all species in a 
system satisfying the above definition will tend asymptotically to their equilib- 
rium densities. Since all species are present at the equilibrium we say that they 
are coexisting at fixed densities. 

Definition 1 is far too restrictive to serve as a general definition of persistence. 
A predator-prey system can exhibit oscillations with neither species ever 
approaching either extinction or constant density. Such a system should be 
considered persistent. To include possibilities other than coexistence at fixed 
densities we use a notion common in the mathematical theory of dynamical 
systems, namely, the notion of an “attractor.” Roughly speaking, we define an 
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attractor block to be a region in the state space ((x1 ,..., x,)> such that solutions 
starting on the boundary of the region pass into its interior. (A precise definition 
of “attractor block” can be found in a previous paper [McGehee and Armstrong, 
19761.) If the species start initially with densities in the attractor block, their 
densities will remain in the block for all future time. If xi > 0, i = I,..., n, at 
all points within the block, then no species will ever approach extinction for any 
solution in the block, and the system is considered persistent. 

DEFINITION 2. The system (4) is said to exhibit persistence if it has an 
attractor block bounded away from the n faces {xi = 0}, i = I,..., n. 

If a community is persistent and if the population densities lie within the 
attractor block, then we shall say that all species are coexisting. Note that 
persistence at fixed densities (Definition 1) is a special case of persistence 
(Definition 2). In the first case, the densities are either constant or are approach- 
ing constant values. In the second case, the densities may be fluctuating in a 
seemingly unpredictable way. 

In Section 2.3 we shall consider communities in a periodically changing 
environment, so that each fi is a function also of time. In such cases we add the 
time axis to the state space and Definition 2 still applies. It is possible that the 
attractor block as seen in (x1 ,..., x,)-space may be different at different times t. 

We are interested in imposing certain structures on the system (4) and in 
determining whether those structures imply the impossibility of persistence. 
These structures can be interpreted to model the situation where the species 
in the community are competing for resources. We are interested in the case 
where there are fewer resources than species. 

DEFINITION 3. A given structure will be said to exhibit competitiwe exclusion 
if no system with that structure is persistent. 

The Volterra model described in Section 1 is an example of such a structure. 
The parameters of the model are the constants m, yi , oi , and R,,, and the 
function F. For different parameters, we get different systems, but they all have 
the same structure. Volterra proved that no system with this structure can be 
persistent and hence that this structure exhibits competitive exclusion. 

Our major objection to Volterra’s model is the assumption of linearity in 
Eq. (1). It is conceivable that the function F in Eq. (2) is linear, but it is entirely 
unreasonable biologically to assume that the specific growth rates are linear 
functions of the resources. A species will always have a maximum growth rate, 
even when resources are unlimited. 

In the following sections we relax Volterra’s linearity assumption and show 
that the resulting structure does not exhibit competitive exclusion. To accom- 
plish this task, we need produce only one system with this structure which 
exhibits persistence. In the sections which follow we develop such a system. 
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2.2. Conservative Resources 

A resource which satisfies assumption (v), that the resource available at 
time t is a function of the densities of the competing species at time t, will be 
called a resource regenerating according to an algebraic relationship. A special 
subclass of resources regenerating to algebraic relationships is the class of 
“conservative resources,” in which the function F of Eq. 2 is a linear function 
at species densities. Examples of conservative resources are space and nutrients. 
In such cases the total amount of resource is fixed, and the amount availabk for 
exploitation at any given time is simply the difference between the total amount 
and the sum of the amounts in use by the competitors at that time. 

More precisely, we consider a system of n species and k conservative resources. 
Let xi be the density of species i and let zj be the available amount of resource j. 
We then write 

a$ = XiUi(X1 ,...) +), i = l,..., n, 

(W 

zj = qmax - ;sjixi, .i = l,...,k 

where we also demand that 

Sji > 0 and au,/az, > 0 for all i, j. (5b) 

In other words, the amount of resourcej in use by species i increases linearly 
with the density of species i and the specific growth rate of species i is a non- 
decreasing function of the available amount of resource j. We do not demand 
strict inequality since species i may not use resourcej. However, it is reasonable 
to assume that 

sji > 0 if and only if aui/&i > 0; (54 

that is, if species i uses resource j, we demand strict inequalities in (5b). 
In the following sections we shall construct a system of the form (5a), satisfying 

assumptions (5b) and (5c), with k = 4 and n arbitrary. In this system none of the 
n competing species can ever approach extinction, so that this example will 
constitute a proof that n species can coexist indefinitely on four conservative 
resources. Since the class of conservative resources is contained in the more 
general class of resources which regenerate algebraically (i.e., by a function such 
as [2]), this example will also show that any number of species can coexist on 
four resources which regenerate algebraically. 

We shall proceed in three steps. First we shall show that any number of 
species can coexist on one conservative resource in a periodically changing 
environment. Next we shall interpret a result of Smale to show that a system of 
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three species and three conservative resources can have an attracting periodic 
orbit. Finally, we shall combine these two results to construct the desired system. 

2.3. Coexistence of n Species on One Conservative Resource Plus Time 

Consider a set of n species xi which inhabit an environment periodic in time 
and whose growth is described by the equations 

where 

i = I,..., n, (64 

We shall show that all species will coexist for appropriate growth functions ui . 
The basic idea is very simple. Each species has a growing season disjoint from 

all others. When a species starts its growing season, the densities of all other 
species are always low enough (hence the available resource abundant enough) 
that this species is able to increase to near its carrying capacity. After its growing 
season each species dies off sufficiently rapidly that it interferes only slightly 
with the growth of the other species. 

Assume that the environment is periodic with period 1. Suppose that the 
growing season for species i begins at time 01~ and ends at time /3{ . For sim- 
plicity we assume that the growth functions in (6a) are given by 

z&z, t) = ygTg&) - ui . 

The gi(t) are “gating functions” which are defined to be 

(74 

g,(t) = 1 for 01~ < t < pi , 

=o for 0 < t < 01~ or & < t < 1. 
(7b) 

Thus species i grows at a rate yiz - ci during its growing season and dies off 
at a rate oi outside this season. The exact form of these gating functions is 
unimportant; the “square pulse” form (7b) is used only because it will make 
later computations easier. 

We assume the growing seasons to be sequential and disjoint so that 

O<oli<pi<ff,+l<fli+l<l, i = l,..., n - 1. (8) 

For each species we define a time interval & and a small amount of resource & 
such that 

6i = ai+1 -pi, i = I,..., n - I ; %I = El + I - pn , (94 
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and 
& = zmax exp(--oJJ. (9b) 

We can interpret (9b) as follows. We require that the amount of resource in 
use by species i be small (less than &) during the growing seasons of the other 
species. Species i cannot be using more than zmas of the resource at the end of 
its growing season. Since the mortality rate of species i outside its growing 
season is (zi , it can be using no more than z mitx exp(--&) of the resource at 
time j$ + & , which by (9a) is the start of the growing season of species i + 1. 

Since the total amount of resource available is finite, it is obvious that no 
species can increase indefinitely. To prove coexistence, however, we must also 
show that when a species is near extinction its average growth rate over one 
cycle is positive. The argument proceeds as follows. 

During the growing season of species i, the amount of resource in use by 
species j ( j # ;) is not more than & . Therefore the amount in use by all species 
i # i is not more than Cji;i & , which is less than 5 = Cy=, & . If 5 < zmax , 
the amount of resource available to species i at the beginning of its growth 
season is at least’z,,, - 5. When species i is so rare that it possesses an amount 
of resource less than ii even at the end of its growth season, an event which must 
occur whenever xi < (?JsJ exp[-(yixmax - uJ(& - ai)] at the beginning of 
its growth season, then the growth rate of species i during its growing season 
will be at least yi(zmax - 5) - (TV. A sufficient condition that the average growth 
rate over the cycle be positive is then 

[Yi(GmX - 5) - Ui](/3i - at) - Ui(l - pi + %) > 0. (10) 

This condition assures that each species increases when rare and hence that none 
can approach extinction. 

We have only left to show that all the above assumptions can be satisfied 
simultaneously. We first take any positive numbers zZmax and si . We then 
choose positive & whose sum is less than .zmitX . Next we choose 01~ , pi , and 
Si satisfying (8) and (9a). We can then choose cri so large that (9b) is satisfied. 
Finally, we choose the yi such that (10) holds. 

2.4. Periodic Orbits in Competition Communities 

Consider the system of equations 

4 = %fi(% , x2 , x3), i= 1,2,3, 

where 

af,/axj < 0 for all i, j. 

(114 

tllb) 

Smale (1976) has shown that a system of form (11) can be constructed such 
that almost all solution trajectories tend asymptotically to a single hyperbolic 
attracting periodic orbit. 
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System (11) can be decomposed into a three-competitor three-conservative 
resource system by use of the change of variables 

for i = 1, 2, 3. System (12) has the form (5a) and satisfies assumption (5b). 
With an arbitrarily small perturbation we can ensure that (5~) also holds. 
If we choose a system of form (11) which exhibits a stable periodic orbit and 
decompose it as in (12), taking care that the zjmax are chosen large enough with 
respect to both the size of the periodic orbit and the initial conditions that the 
xi never become negative, we have in fact constructed a three-competitor three- 
conservative resource system which possesses an attracting periodic orbit. 

2.5. Coexistence of any Number of Species on Four Conservative Resources 

The results of the previous two sections can be combined to allow the co- 
existence of any number of species on four conservative resources. To achieve 
this result, we let the gating functions of (7) b e f unctions of the two resources 
.a, and za instead of functions of time. We are led to the set of equations 

4 = x&&, , x3 , z3), i = 1,2,3, 

3i.i = x&+z4g&, , Z”) - Oil, i = 4,..., n, 

zi .T ZiITULX - xi j i = 1,2,3, 
(13) 

Species xi , x2 , and x3 are assumed to approach a periodic orbit. It is seen that 
x1 , x2 and x3 affect the growth of the other species (through the gating functions 
gi) but that there is no reverse effect. 

We choose the gating function gi(z i , z2) to be the product of two functions 
gil(zl) and gi2(z2) which are nondecreasing functions of their arguments. We let 
gil = 0 for xi < z;i and gi, = 1 for zi > & , and similarly for gi2 . If we then 
choose pairs of values (& , ,~:a) such that the species x4 ,..., x, grow along 
disjoint segments of the periodic orbit of the first three species (Fig. l), the 
“gating” effect will be identical to that produced by the explicit time dependence 
of Section 2.3, and the coexistence of all species will be assured. The system (13) 
has the form (5a) and satisfies assumption (5b). With an arbitrarily small 
perturbation we can assure that (5~) also holds. 

Intuitively, we see that the system first tends to adjust so that species 1, 2, and 
3 cycle on a periodic orbit. Their cycling then provides a time-dependent 
environment in which any number of additional species are able to coexist. 
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FIG. 1. Division of the periodic orbit of species x1 , x2 , x3 , into segments (A, , A, , AB) 
along which the gating functions of three other species (x1 , x5 , x6) are nonzero. In 
principle the periodic orbit can be divided as finely as desired, with the result that any 
number of species can be made to coexist on four conservative resources. 

2.6. Biological Rationalization 

In this section we hope to make more plausible a certain feature of model (13) 
which is perhaps biologically a bit strained. In the decomposition of Eqs. (11) 
into Eqs. (12) we have in effect stated that the growth rate of each species is 
affected by the concentration of all resources but that the concentration of each 
resource is affected by the density of only one species. A similar feature is 
present when models (6) and (12) are combined to yield model (13). 

This unpleasant aspect of (13) is made more palatable by the perturbation 
described at the end of the preceding section. However, the perturbation is small 
and we have still not overcome the objection (to model [12] and, by extension, 
to [13]) that while the growth rate of the ith species (i = 1, 2, 3) is affected 
strongly by all resource densities, still the density of the ith species affects only 
the density of the ith resource strongly, affecting the other resource densities 
only weakly. This difficulty is easily rationalized if we regard the ith resource as 
a resource consumed by the ith competitor in great quantities, while the other 
resources act in the manner of catalysts to the ith species; that is, they are needed 
by the ith species for growth but their concentrations are little affected by the 
density of species i. Similar arguments can be extended to all the species in the 
full model (I 3). 

This interpretation is offered only in the interest of making the mathematical 
form of the model (13) biologically more palatable. Mathematically, once the 
perturbation has been performed so that assumption (5~) holds, the system (13) 
satisfies all the mathematical requirements for a competitive community limited 
by conservative resources. 
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It should be stressed that the particular functional forms used in our mode1 
system were chosen for convenience in obtaining the mathematical proof, 
and not for biological realism. We needed to construct only one system in 
which n species could coexist on fewer than n resources to prove that the class of 
models obeying only assumptions (i)-(v) d oes not exhibit competitive exclusion, 
and the particular model chosen made our task relatively easy. We emphasize, 
however, that similar results should be obtainable in models of greater biological 
realism. 

3. MATHEMATICAL DISCUSSION 

We have shown, in this paper and elsewhere (Armstrong and McGehee, 1976; 
McGehee and Armstrong, 1976), that the assumption that the specific growth 
rate of a population is a linear function of resource density, an assumption which 
was implicit in the work of Volterra (1928) an ex ICI in various later extensions d pl’ ‘t 
of this work (MacArthur and Levins, 1964; Rescigno and Richardson, 1965; 
Levin, 1970), is crucial for any “proof” of the so-called competitive exclusion 
principle (Hardin, 1960). Without this assumption little of a general nature can 
be proved regarding the number of resources (or factors) necessary for the 
maintenance of stable coexistence. 

The following facts have been established, however. First, if n species are to 
coexist on fewer than n of Levin’s (1970) factors, the attractor must have Euler 
characteristic 0 (McGehee and Armstrong, 1975). S ince the Euler characteristic 
of a point is 1, point attractors are not possible. Therefore the statement that n 
species cannot coexist at fixed densities when limited by fewer than n factors is 
true. This statement is also true if “factors” is replaced by “conservative 
resources.” 

Second, any number of predator species can coexist on a single prey species 
if the prey is allowed to regenerate according to a differential equation (Zicarelli, 
1975). By the use of an appropriate change of variables (see Armstrong and 
McGehee, 1976), it can be shown that Zicarelli’s proof also implies that any 
number of species can coexist on as few as two of Levin’s “factors” (Levin, 1970). 

Third, any number of competing species can coexist on as few as four con- 
servative resources. We conjecture that coexistence should be possible with three 
conservative resources but find this question to be more of mathematical than 
of ecological interest. Since each conservative resource can be identified as a 
factor in the sense of Levin (1970), th e p resent work also provides an alternative 
proof that any number of species can coexist on a fixed number of factors. 

Fourth, the question of how many species can coexist on one factor is still in 
doubt. It is certain that two species cannot coexist on one factor (McGehee and 
Armstrong, 1976) but whether more than two can coesist is an open question. 
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4. BIOLOGICAL DISCUSSION 

In his classic paper “The Paradox of the Plankton,” Hutchinson (1961) argued 
that the competitive exclusion principle is useful to ecologists because it “can 
be used to examine a situation where its main conclusions seem to be empirically 
false. Just because the theory is analytically true and in a certain sense tautological, 
we can trust it in the work of finding out what has happened to cause its empirical 
falsification.” Hutchinson’s view is that the competitive exclusion principle 
is an idealized case, and that when coexistence is observed it is because one or 
more of the biological assumptions necessary for the proof of this principle have 
been violated. 

We would argue, however, that it is difficult to rationalize as “biological” 
the assumption that species growth rates must be linear functions of resource 
densities. It is possible, at least in an experimental system such as a chemostat 
and using simple organisms such as bacteria (cf. Jost et al., 1973), to approximate 
the biological assumptions of environmental homogeneity and constancy, 
lack of age structure, and so on. But no example can be found where growth 
increases linearly with food density; in all real cases there must be some upper 
limit on growth rate no matter how much resource is present. The assumption 
of linearity was undoubtedly included by previous authors only for the purpose 
of mathematical simplicity. However, because we have shown that this assump- 
tion is necessary for any proof of the competitive exclusion principle which 
does not require biological assumptions in addition to assumptions (i)-(v), we 
are left with a dilemma: Do we somehow try to rationalize the assumption of 
linearity as “biological,” a course which is plainly undesirable, or do we reject 
entirely the proposition that the competitive exclusion principle can be proved 
using only “biological” assumptions ? 

We suggest a third course. As noted in Section 3, it can be shown (McGehee 
and Armstrong, 1976) that n species cannot coexist at fixed densities on fewer 
than n resources (or when limited by fewer than n factors). We would therefore 
suggest that the principle of competitive exclusion, as a biological principle, 
should be recognized as applying only to coexistence at fixed densities. The 
principle does not apply to cases in which species coexist at fluctuating densities, 
even when these fluctuations occur in a constant environment. 
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