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LETTERS TO THE EDITOR 

Coexistence of Two Competitors on One Resource 

In a recent paper, Koch (1974b) presented a computer simulation showing 
that two predator species can coexist on a single prey species in a spatially 
homogeneous and temporally invariant environment. This result was then 
interpreted in the context of Levin's extended exclusion principle (Levin, 
1970). In this note we offer a different interpretation of the relation of 
Koch's work to Levin's and relate both to the classical work of Volterra 
(1928). 

Volterra (1928) was apparently the first to use a mathematical model to 
demonstrate that under certain conditions it is impossible for two species 
to coexist indefinitely while using the same resource. Volterra first assumed 
that the growth of the competing species could be described by a system of 
differential equations. He then postulated the existence of two species N~ 
and N2 competing for the same resource R and assumed that the specific 
growth rate of each of the competing species increases linearly with the 
amount of resource present; that is, he assumed competitor equations of 
the form 

1 d N  1 
- y l R - t r  1 

N t " d t  

1 dN2 
_ _  _ T2R-a-2. 

N 2 " d t  

(1) 

equations: 

dN1 = N1Eel-r ,F(N, ,  N2)] 
dt 

dN2 = N 2 [ e 2 _ y 2 F ( N 1 ,  N2)-]. 
dt 
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(3) 

Volterra next assumed that the amount of resource available to any com- 
petitor at time t is diminished in proportion to the densities of the com- 
petitors so that 

R = R m a x - F ( N l ,  N2), (2) 

where F is an increasing unbounded function of NI and N2. Substituting 
(2) into (1) and replacing yiRm,x-tr~ by at, we obtain Volterra's original 
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Volterra showed that if ~t/Tt > ~2/~2 and N:(0) ~ 0, then N2(t ) --, 0 as 
t ~ oo. Thus N2 is eliminated by NI in competition for the single resource R. 

In addition to the many ecological simplifications, which have been 
discussed extensively elsewhere (Hutchinson, 1961 ; Haigh & Maynard Smith, 
1972; Stewart & Levin, 1973; Koch, 1974a), Volterra's model contains two 
restrictions on the mathematical form of the equations used: (a) the resource 
available at time t is a function of the population densities of the com- 
petitors at time t, and (b) the specific growth rate of each competitor is a 
linear function of R. By relaxing both of these assumptions simultaneously, 
Koch (1974b) was able to show by computer simulation that even in a 
spatially homogeneous and temporally invariant environment the stable 
coexistence of two predators on a single undifferentiated resource is possib/e, 
although this coexistence is not at fixed densities. 

We have been investigating the properties of models similar to those used 
by Koch (1974b) and have developed a rigorous proof that the coexistence 
of two predators on one resource is indeed possible. The details of this proof 
are too involved to be presented in this note; they will be the subject of a 
later communication. Our proof complements and confirms Koch's result: 
that n species can coexist on fewer than n resources. We differ with Koch, 
however, regarding the implications of this result for the validity of Levin's 
(1970) proposition that n species cannot coexist on fewer than n "limiting 
factors". We explore this point more fully below. 

The models employed by Koch (1974b) and by us (McGehee & Armstrong, 
1976) are of the form 

dN1 
clt = N I [ -  ml +clRpl(R)] 

dN2 
dt = N2 [ -  m2 + c2Rp2(R)] (4) 

dR 
dt - R[g(R)-  Nlpl(R ) -  N2P2(R)]. 

Here the resource R is a prey species on which the two competitors N1 
and N 2 prey. The constants mx and m2 are mortality rates of the predators 
in the absence of prey. The specific growth rate of the prey in the absence 
of both predators is g(R). For the ith predator the predation rate per predator 
is the function Rp~(R) of the prey density. The constants cx and c2 describe 
the calorific or numerical conversion of prey into predator, depending on 
the units chosen. 

Except in the unlikely case where - rn  I +cIRpl(R) and - m  2 d-c2RP2(R) 

are both zero for the same value of R, there will be no simultaneous solution 



of the three equations 

and 
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dNt 
dt 

dN2 
0, 

dt 

dR 
~ - - - - - 0  
dt 

with NI and N2 both positive. Therefore the two competitors cannot in 
general coexist at constant population densities. 

It can be shown, however, that in a class of equations of the form of 
equations (4) the solution trajectories forever remain bounded away from 
the planes NI = 0, N2 = 0 and R = 0 (McGehee & Armstrong, 1976). 
Thus neither predator can ever approach extinction; the predators coexist 
indefinitely, though not at fixed densities. 

This result reflects directly upon the validity of Levin's (1970) extension 
of the competitive exclusion principle. In developing his idea, Levin replaces 
"resources" with more abstract quantities he terms "limiting factors". 
Levin introduces the following model: 

dx____kk = 
dt xkfk(zi . . . .  , Zp), k = 1 , . . . ,  n 

(5) 
z j  = z j ( x l  . . . . .  x . ) ,  j = 1 . . . . .  p .  

Here xk represents the population of the kth species, and zj is thejth limiting 
factor. The specific growth .rate of the kth species is fk, assumed by Levin 
to be a linear function of the limiting factors. Given the linearity restriction 
on thefk, Levin (1970) showed that stable coexistence cannot occur i fp < n. 
On the basis of this result Levin proposed an extended exclusion principle: 
that n species cannot coexist if they are limited by fewer than n independent 
"'factors". 

Levin's proof, however, depends critically on the linearity of the functions 
f l  . . . .  f~. To see this, consider equations (4) and make the following sub- 
stitutions: 

xj = N I ,  x 2 = N 2 ,  x 3 = g  

Zl(Xl, x2, x3) = x3 

z2(xl,  x2, x3) = g ( x 3 ) - x l p t ( x 3 ) - x 2 P 2 ( X 3 )  

fl(zt ,  z2) = - m l  + c t z lp l ( z t )  

f2(zl, z2) -- --m2 + c2z2P2(Z:) 

f3(zl ,  z2) = z 2. 
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Equations (4) are then transformed to the form of  equations (5) with p = 2 
and n = 3. Since there exists a class of  systems of the form of equations (4) 
in which stable coexistence does occur (Koch, 1974b; McGehee & Armstrong, 
1976), n species can indeed coexist when limited by fewer than n factors. 
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