EXERCISES - SEC $4.2-4.4$ $\operatorname{SEC} 4.2-2.11,2.12,2.14,2.16,2.15$,
2.20
SEC $4.3-3.5,3.6$
SEC 4.4-PROOF OF THM 4.6,
PROVE: IF $0 \leq x \leq 2, \sum_{n=0}^{\alpha} \frac{(2)}{n!}$
CONVERGES
EXAM 2 - FRIOMY, 3/26 COVERS CHAPTER 3, LECTURES AND NOTES
REVIEW - WED, 3/24 LECTURE
NO OFFICE HRS, FRIDAY, $3 / 12$ SPECIAL OFFICE HRS, MONDAY, 3/22, 10:30-12 NOON, VH 4 HO FOR THIS WEEK DUE TUESDAY. 3/23

The convergence or divergence of a series can sometimes be deduced from the convergence or divergence of a closely related improper integral.

## Theorem 13.3.2 The Integral Test

If $f$ is continuous, decreasing, and positive on $[1, \infty)$, then

$$
\sum_{k=1}^{\infty} f(k) \quad \text { converges iff } \int_{1}^{\infty} f(x) d x \text { converges. }
$$

Proof.
$f$ containurus, decreasing, and positive on $[1, \infty)$ IMPLIES

$$
\int_{1}^{\infty} f(x) d x \text { converges iff the sequence }\left\{\int_{1}^{n} f(x) d x\right\} \text { converges. }
$$

We assume this result and base our proof on the behavior of the sequence of ingegrass. To visualize our argument see Figure 13.3.1.


Figure 13.3.1

Since $f$ decreases on the interval $[1, n]$, $f(2)+\cdots+f(n)$ is a lower sum for $f$ on $[1, n]$
and

$$
f(1)+\cdots+f(n-1) \text { is an upper sum for } f \text { on }[1, n] \text {. }
$$

Consequently
(1)

$$
f(2)+\cdots+f(n) \leq \int_{1}^{n} f(x) d x=S_{n} \text { and } \quad \int_{1}^{n} f(x) d x \leq f(1)+\cdots+f(n-1)
$$

If the sequence of integralsjconverges, it is bounded. By the first inequality the sequence of partial sums is bounded and the series is therefore convergent.
Suppose now that the sequences ${ }^{s}$ f integrals diverges. Since $f$ is positive, the sequince of integrals increases:

$$
\int_{1}^{n} f(x) d x<\int_{1}^{n+1} f(x) d x
$$

Since this sequence diverges, it must be unbounded. By the second inequality, the sequence of partial sums must be unbounded and the series divergent.

Applying t
Example.

Proof. Tl
$[1, \infty)$. We l

By the inter

The next
Example:
(13.3.4)


Proof, If $p$ (13.2.5), the . ion $f(x)=1$, the integral $t_{1}$

Earlier you s:

It follows that

Example. He
diverges. We
$t$ The term com: vibrates are sac

GROUP WORK 2, SECTION 11.3
Unusual Sums
In each of the following problems, determine if the sum converges, diverges, or if there is not enough information to tell:

4. $\sum_{n=1}^{\infty} \int_{n}^{2 h} \frac{1}{x^{5 / 3}} d x \quad \leq \leq \leq$

