Homework \#2 for MATH 5345H: Introduction to Topology

September 13, 2019

Due Date: Friday 20 September in class.

1. Suppose $A_{1}, A_{2}, A_{3}, \cdots$ are sets such that for each n, the intersection

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n}
$$

is nonempty. Is it always the case that the infinite intersection

$$
\bigcap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap A_{3} \cap \cdots
$$

is nonempty? If so, prove it. If not, give a counterexample.
2. Let S, T and U be sets. Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. For each part, give a proof or a counterexample.
(a) If f and g are injective, must $g \circ f$ be injective?
(b) If $g \circ f$ is injective, must f be injective?
(c) If $g \circ f$ is injective, must g be injective?
3. Let A be a set, and write $P(A)$ for the power set of A;

$$
P(A)=\{S \mid S \subseteq A\}
$$

Assuming that A has n elements, show that $P(A)$ has 2^{n} elements.
Also do these problems from Munkres' Topology: ch.1, $\S 3, \# 1,4,11$.

