Homework #3 for MATH 5345H: Introduction to Topology

September 19, 2017

Due Date: Monday 25 September in class.

1. Let \mathcal{B} be the set of all *closed* intervals in \mathbb{R} :

$$\mathcal{B} = \{ [a, b] \mid a, b \in \mathbb{R} \}.$$

Show that \mathcal{B} is a basis for a topology on \mathbb{R} . If $\mathcal{T}_{\mathcal{B}}$ is the topology generated by \mathcal{B} , describe all of the open sets of \mathcal{B} . Is $\mathcal{T}_{\mathcal{B}}$ coarser than, finer than, equal to or incomparable with the usual topology on \mathbb{R} ?

2. Let $\mathbb{R}[x_1, \ldots, x_n]$ denote the set of polynomials in n variables x_1, \ldots, x_n whose coefficients lie in \mathbb{R} . So, for instance, $x_1 - 3x_2^2 + \sqrt{2}x_7^4 \in \mathbb{R}[x_1, \ldots, x_9]$, but neither $\frac{x_1}{x_2}$ nor ix_5^3 is an element of this set of polynomials.

For a subset $S \subseteq \mathbb{R}[x_1, \ldots, x_n]$, write $V(S) \subseteq \mathbb{R}^n$ to be the set

$$V(S) = \{(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = 0, \forall f \in S\} \\ = \bigcap_{f \in S} \{(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = 0\}.$$

Let $U(S) = \mathbb{R}^n \setminus V(S)$. We will show that the collection $T_Z = \{U(S), S \subseteq \mathbb{R}[x_1, \ldots, x_n]\}$ forms a topology on \mathbb{R}^n , called the *Zariski topology*.

- (a) For any real number r (such as r = 0 or r = 1), write r for the constant polynomial r. Show that $V(\{(0\}) = \mathbb{R}^n)$.
- (b) Show that $V(\{1\}) = \emptyset$.
- (c) Show that, for any indexing set J,

$$V(\bigcup_{j\in J}S_j)=\bigcap_{j\in J}V(S_j)$$

(d) For any two sets $S, T \subseteq \mathbb{R}[x_1, \ldots, x_n]$, define

$$ST := \{ f \cdot g \mid f \in S, g \in T \}$$

Show that $V(ST) = V(S) \cup V(T)$.

- (e) Show that T_Z is a topology on \mathbb{R}^n .
- (f) Fix n = 1, and show that for any set $S \subseteq \mathbb{R}[x_1]$, V(S) is finite. Conversely, let $F \subset \mathbb{R}$ be any finite set. Find a set $T \subseteq \mathbb{R}[x_1]$ with V(T) = F.
- (g) Show that the Zariski topology on \mathbb{R}^1 is equal to the finite complement topology.
- 3. Show that if \mathcal{B} is a basis for a topology on X, then the topology generated by \mathcal{B} equals the intersection of all topologies on X that contain \mathcal{B} . Is the same true for a subbasis?