$1^{\text {st }}$ midterm for MATH 1272: Calculus II, section 030

Name:

Section Number:
ID \#:

Teaching Assistant:

Instructions:

- Please don't turn over this page until you are directed to begin.
- There are 6 problems (and problems 1, 2, 4, and 5 have 2 parts) on this exam.
- There are 7 pages to the exam, including this page. All of them are one-sided. If you run out of room on the page that you're working on, use the back of the page.
- Please show all your work. Answers unsupported by an argument will get little credit.
- Scientific calculators are allowed. No books or notes are allowed. Please turn off your cell phones.

Grading summary

Problem:	1	2	3	4	5	6	total
Possible:	10 points	10 points	10 points	15 points	15 points	10 points	70 points
Grade:							

Some helpful formulas

$\sin ^{2}(x)+\cos ^{2}(x)=1$	$\tan ^{2}(x)+1=\sec ^{2}(x)$	$1+\cot ^{2}(x)=\csc ^{2}(x)$
$2 \sin ^{2}(x)=1-\cos (2 x)$	$2 \cos ^{2}(x)=1+\cos (2 x)$	$2 \sin (x) \cos (x)=\sin (2 x)$
$\int \tan (x) d x=\ln \|\sec (x)\|+C$	$\int \sec (x) d x=\ln \|\sec (x)+\tan (x)\|+C$	$\int \csc (x) d x=\ln \|\csc (x)-\cot (x)\|+C$

1. (10 points total, 5 points each)
(a) Evaluate the integral

$$
\int x \sec ^{2}(x) d x
$$

(b) Evaluate the integral

$$
\int x \tan ^{2}(x) d x
$$

Hint: The previous part may be helpful.
2. (10 points total, $\mathbf{5}$ points each) Determine if the following integrals are convergent or divergent. If convergent, evaluate the integral:
(a)

$$
\int_{5}^{\infty} \frac{e^{x}+7}{e^{x}+2} d x
$$

(b)

$$
\int_{0}^{\infty} \frac{1}{x(\ln x)^{3}} d x
$$

3. (10 points) Evaluate the integral

$$
\int \frac{d x}{x \sqrt{5-x^{2}}}
$$

4. (15 points total)
(a) (10 points) Evaluate the integral

$$
\int \frac{2 u d u}{u^{2}+2 u-3}
$$

(b) (5 points) Evaluate the integral

$$
\int \frac{d x}{2 \sqrt{x+3}+x}
$$

Hint: The previous part may be helpful.
5. (15 points total)
(a) (5 points) Find the area of the region \mathcal{R} in the plane bounded by the curves

$$
y=e^{x} ; \quad y=0 ; \quad x=0 ; \quad x=1 .
$$

(b) (10 points) Find the centroid (or center of mass) of the region \mathcal{R}.
6. (10 points) Find the length of the curve $y=\ln (\cos (x))$ on the interval $0 \leq x \leq \pi / 4$.

