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Abstract

The methods to establish the limiting spectral distribution (LSD) of large dimensional random ma-
trices includes the well known moment method which invokes the trace formula. Its success has been
demonstrated in several types of matrices such as the Wignermatrix and the sample covariance matrix.
In a recent article Bryc, Dembo and Jiang (2006) [7] establish the LSD for random Toeplitz and Han-
kel matrices using the moment method. They perform the necessary counting of terms in the trace by
splitting the relevant sets into equivalence classes and relating the limits of the counts to certain volume
calculations. Bose and Sen (2008) [6] have developed this method further and have provided a general
framework which deals with symmetric matrices with entriescoming from an independent sequence.

In this article we enlarge the scope of the above approach to consider matrices of the formAp =
1

n
XX ′ whereX is ap × n matrix with real entries. We establish some general resultson the existence

of the spectral distribution of such matrices, appropriately centered and scaled, whenp → ∞ andn =
n(p) → ∞ andp/n → y with 0 ≤ y < ∞. As examples we show the existence of the spectral
distribution whenX is taken to be the appropriate asymmetric Hankel, Toeplitz,circulant and reverse
circulant matrices. In particular, wheny = 0, the limits for all these matrices coincide and is the same
as the limit for the symmetric Toeplitz derived in Bryc, Dembo and Jiang (2006) [7]. In other cases,
we obtain new limiting spectral distributions for which no closed form expressions are known. We
demonstrate the nature of these limits through some simulation results.
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1 Introduction

1.1 Random matrices and spectral distribution

Random matrices were introduced in mathematical statistics by Wishart (1928) [20]. In 1950 Wigner suc-
cessfully used random matrices to model the nuclear energy levels of a disordered particle system. The
seminal work, Wigner (1958) [19] laid the foundation of thissubject. This theory has grown into a sepa-
rate field now, with application in many branches of sciencesthat includes areas as diverse as multivariate
statistics, operator algebra, number theory, signal processing and wireless communication.

Spectral properties of random matrices is in general a rich and attractive area for mathematicians. In
particular, when the dimension of the random matrix is large, the problem of studying the behavior of the
eigenvalues in the bulk of the spectrum has arisen naturallyin many areas of science and has received
considerable attention. SupposeAp is a p × p random matrix. Letλ1, . . . , λp ∈ R (or C) denote its
eigenvalues. When the eigenvalues are real, our conventionwill be to always write them in ascending order.
The empirical spectral measureµp of Ap is the random measure onR (or C ) given by

µp =
1

p

p∑

i=1

δλi
, (1)

whereδx is the Dirac delta measure atx. The random probability distribution function onR (or C) corre-
sponding toµp, is known as theEmpirical Spectral Distribution(ESD) ofAp. We will denote it byFAp .

If {FAp} converges weakly (asp tends to infinity), either almost surely or in probability, to some (non-
random) probability distribution, then that distributionis called theLimiting Spectral Distribution(LSD)
of {Ap}. Proving existence of LSD and deriving its properties for general patterned matrices has drawn
significant attention in the literature. We refer to Bai (1997) [1] Bose and Sen (2008) [6] for information on
several interesting situations where the LSD exists and canbe explicitly specified.

Possibly the two most significant matrices whose LSD have been extensively studied, are the Wigner and
the sample covariance matrices. For simplicity, let us assume for the time being that all random sequences
under consideration are independent and uniformly bounded.

1. Wigner matrix . In its simplest form, the Wigner matrixW (s)
n (Wigner, 1955, 1958) [18, 19], of order

n is ann × n symmetricmatrix whose entries on and above the diagonal are i.i.d. random variables with
zero mean and variance one. Denoting those i.i.d. random variables by{xij : 1 ≤ i ≤ j}, we can visualize
the Wigner matrix as

W (s)
n =




x11 x12 x13 . . . x1(n−1) x1n

x12 x22 x23 . . . x2(n−1) x2n
...

x1n x2n x3n . . . xn(n−1) xnn


 . (2)

It is well known that almost surely,

LSD of n−1/2W (s)
n is thesemicircle lawW, (3)

with the density function

pW (s) =





1
2π

√
4 − s2 if |s| ≤ 2,

0 otherwise.
(4)
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2. Sample covariance matrix (S matrix) . Suppose{xjk : j, k = 1, 2, . . .} is a double array of i.i.d.
real random variables with mean zero and variance 1. The matrix

Ap(W ) = n−1WpW
′
p where Wp = ((xij))1≤i≤p,1≤j≤n (5)

is called a sample covariance matrix (in short anS matrix). LetIp denote the identity matrix of orderp. The
following results are well known. See Bai (1999) [1] or Bose and Sen (2008) [6] for moment method and
Stieltjes transform method proofs. To have the historical idea of the successive development of these results
see Bai and Yin (1988) [3] for (a) and Marčenko, and Pastur (1967) [13], Grenander and Silverstein (1977)
[9], Wachter (1978) [17], Jonsson (1982) [11], Yin and Krishnaiah (1985) [22] and Yin (1986) [21] for (b).

(a) If p → ∞ andp/n −→ 0 then almost surely,

LSD of
√

n

p
(Ap(W ) − Ip) is the semicircle law given in (4) above. (6)

(b) If p → ∞ andp/n −→ y ∈ (0,∞) then almost surely,

LSD of Ap(W ) is the Marčenko-Pastur lawMPy given in (8) below. (7)

TheMar čenko-Pastur law, MPy, has a positive mass1 − 1
y at the origin ify > 1. Elsewhere it has a

density:

MPy(x) =





1
2πxy

√
(b − x)(x − a) if a ≤ x ≤ b,

0 otherwise
(8)

wherea = a(y) = (1 −√
y)2 andb = b(y) = (1 +

√
y)2.

Supposep = n. ThenWn above is a square matrix with i.i.d. elements, and the Wignermatrix W
(s)
n is

obtained fromWn by retaining the elements above and on the diagonal ofWn and letting symmetry dictate
the choice of the rest of the elements ofW

(s)
n . We loosely say thatWn is theasymmetricversion ofW (s)

n . It
is interesting to note the following:

(i) The LSD ofn−1/2W
(s)
n in (3) and that of

√
n
p ( 1

nWpW
′
p − Ip) in (6) are identical.

(ii) If W andM are random variables obeying respectively, the semicirclelaw and the Marčenko-Pastur

law with y = 1, thenM
D
= W 2 in law. That is, the LSD ofn−1/2W

(s)
n and that of1nWpW

′
p bears this

squaring relationship whenp/n → 1.

1.2 The problem and its motivation

In view of the above discussion, it thus is natural to study the LSD of matrices of the formAp(X) =
(1/n)XpX

′
p whereXp is a p × n suitably patterned (asymmetric) random matrix. Asymmetryis used

loosely. It just means thatXp is not necessarily symmetric. In particular one may ask the following ques-
tions.

(i) Supposep/n → y, 0 < y < ∞. When does the LSD ofAp(X) = 1
nXpX

′
p exist?

(ii) Supposep/n → 0. When does the LSD of
√

n
p (Ap(X) − Ip) exist? Note that unlike theS matrix,

the mean ofAp(X) is not in general equal toIp and hence other centering/normalisations may also need to
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be allowed.

(iii) SupposeXp is ap × n (asymmetric) patterned matrix andAp(X) = 1
nXpX

′
p for which the limit in

(ii) holds. Call it A. Now consider the square symmetric matrixX
(s)
n obtained fromXp by lettingp = n

and symmetrising it by retaining the elements ofXp above and on the diagonal and allowing symmetry to

dictate the rest of the elements. Suppose asn → ∞, the LSD ofn−1/2X
(s)
n exists. Call itB. In general, is

there any relation betweenB andA?

A further motivation to study the LSD of1nXpX
′
p comes from wireless communications theory. Many

results on the information-theoretic limits of various wireless communication channels make substantial use
of asymptotic random matrix theory, as the size of the matrixincreases. An extended survey of results
and works in this area may be found in Tulino and Verdu (2004) [16]. Also see Silverstein and Tulino
(2006) [15] for a review of some of the existing mathematicalresults that are relevant to the analysis of the
properties of random matrices arising in wireless communications. The study of the asymptotic distribution
of thesingular valuesis seen as an important aspect in the analysis and design of wireless communication
channels.

A typical wireless communication channel may be described by the linear vector memoryless channel:

y = Xpθ + ǫ

whereθ is then-dimensional vector of the signal input,y is thep-dimensional vector of the signal output,
and thep dimensional vectorǫ is the additive noise.Xp, in turn, is thep × n random matrix, generally with
complex entries.

Silverstein and Tulino (2006) [15] emphasize the asymptotic distribution of the squared singular-values
of Xp under various assumptions on the joint distribution of the random matrix coefficients wheren and
p tend to infinity while the aspect ratio,p/n → y, 0 < y < ∞. In their model, generally speaking, the
channel matrixXp can be viewed asXp = f(A1, A2, ..., Ak) where{Ai} are some independent random
(rectangular) matrices with complex entries, each having its own meaning in terms of the channel. In most
of the cases they studied, someAi have all i.i.d. entries, while the LSD of the other matricesAjA

∗
j , j 6= i

are assumed to exist. Then the LSD ofXpX
∗
p is computed in terms of the LSD ofAjA

∗
j , j 6= i .

Specifically, certain CDMA channels can be modeled (e.g. seeTulino and Verdu (2004) [16, Chapter 3],
Silverstein and Tulino (2006) [15]) asXp = CSA whereC is ap × p random symmetric Toeplitz matrix,
S is a matrix with i.i.d. complex entries independent ofC, andA is ann× n deterministic diagonal matrix.
One of the main theorems in Silverstein and Tulino (2006) [15] establishes the LSD ofXp = CSA for
randomp × p matrix C, not necessarily Toeplitz, under the added assumption thatthe LSD of the matrices
CC ′ exists. WhenC is a random symmetric Topelitz matrix, the existence of the LSD ofCC ′ is immediate
from the recent work of Bryc, Dembo and Jiang (2006) [7] and, Hammond and Miller (2005) [10]. This
also motivates us to study the LSD ofXpX

′
p matrices in some generality whereXp is not necessarily square

and symmetric.

1.3 The moment method

We shall use themethod of momentsto study this convergence. To briefly describe this method, suppose
{Yp} is a sequence of random variables with distribution functions{Fp} such thatE(Y h

p ) → βh for every
positive integerh, and{βh} satisfiesCarleman’s condition(see Feller, 1966, page 224) [8]:

∞∑

h=1

β
−1/2h
2h = ∞. (9)
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Then there exists a distribution functionF , such that for allh,

βh = βh(F ) =

∫
xhdF (x) (10)

and{Yp} (or equivalently{Fp}) converges toF in distribution. We will often in short writeβh when the
underlying distributionF is clear from the context.

Now suppose{Ap} is a sequence ofp×p symmetric matrices (with possibly random entries), and let, by
a slight abuse of notation,βh(Ap) denote theh-th moment of the ESD ofAp. Suppose there is a sequence
of nonrandom{βh}∞h=1 satisfying Carleman’s condition such that,

(M1) First moment condition: For everyh ≥ 1, E[βh(Ap)] → βh and

(M2) Second moment condition:For everyh ≥ 1, Var[βh(Ap)] → 0.

Then the LSD is identified by{βh}∞h=1 and the convergence to LSD holds in probability. This conver-
gence may be strengthened to almost sure convergence by strengthening (M2), for example, by replacing
variance by the fourth moment and showing that

(M4) Fourth moment condition: For everyh ≥ 1, E[βh(Ap) − E(βh(Ap))]
4 = O(p−2).

For any symmetricp × p matrixA with eigenvaluesλ1, . . . λp, thetrace formula

βh(A) = p−1
p∑

i=1

λh
i = p−1 Tr(Ah)

is invoked to compute moments. Moment method proofs are known for the results on Wigner matrix and
the sample covariance matrix given earlier. See for example, Bose and Sen (2008) [6].

1.4 Brief overview of our results

Let Z be the set of all integers. Let{xα}α∈Z be aninput sequencewhereZ = Z or Z
2 and{xα} are

independent withExα = 0 and Ex2
α = 1. Let Lp : {1, 2, . . . , p} × {1, 2, . . . , n = n(p)} → Z be a

sequence of functions which we calllink functions. For simplicity of notation, we will writeL for Lp. We
shall later impose suitable restriction on the link functions Lp and sufficient probabilistic assumptions on
the variables. Consider the matrices

Xp = ((xLp(i,j)))1≤i≤p, 1≤j≤n and Ap = Ap(X) = (1/n)XpX
′
p.

The functionLp defines an appropriate pattern and we may call these matricespatternedmatrices. The
assumptions on the link function restrict the number and manner in which any element of the input sequence
may occur in the matrix.

We shall consider two different regimes:

Regime I. p → ∞, p/n → y ∈ (0,∞). In this case, we consider the spectral distribution of
Ap = Ap(X) = n−1XpX

′
p.

Regime II. p → ∞, p/n → 0. In this case we consider the spectral distribution of(np)−1/2(XpX
′
p−

nIp) =
√

n
p (Ap − Ip) whereIp is the identity matrix of orderp.
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We will use the following assumptions on the input sequencesin two regimes.

Assumption R1. In Regime I,{xα} are independent with mean zero and variance one, and are either
uniformly bounded or identically distributed.

Assumption R2. In Regime II,{xα} are independent with mean zero and variance 1. Further,λ ≥ 1 is
such thatp = O(n1/λ) andsupα E(|xα|4(1+1/λ)+δ) < ∞ for someδ > 0.

The moment method requires all moments to be finite. However,in Regime I, our basic assumption will
be that the input sequence has finite second moment. To deal with this, we first prove a truncation result
which shows that in Regime I, under appropriate assumption on the link function, without loss of generality,
we may assume the input sequence to be uniformly bounded. Thesituation in Regime II is significantly
more involved and there we assume existence of higher moments.

We then establish a negligibility result which implies thatfor nonzero contribution to the limiting mo-
ments, only summands in the trace formula which are “pair matched” matter. See next section for details
on “matching”. The existence of the limit of the sum of pair matched terms and then the computation of the
limit establishes the LSD.

Quite interestingly, under reasonable assumptions on the allowed pattern,if the limit of empirical mo-
ments exist, they automatically satisfy Carleman’s condition and thus ensures the existence of the LSD.
However, we are unaware of any general existing method of imposing suitable restrictions on the link func-
tion to guarantee the existence of limits of moments.

As examples of our method, we letXp to be the nonsymmetric Toeplitz, Hankel, reverse circulantand
circulant matrices. We show that the LSD exists in both Regimes I and II, thereby answering questions (i)
and (ii) in the previous section affirmatively for these matrices. The LSD in Regime I are all new.

However, in Regime II, the LSD of all four matrices above are identical to the LSD obtained by Bryc,
Dembo and Jiang (2006) [7] for thesymmetricToeplitz matrixT (s)

n . This implies that the answer to question
(iii) is not straightforward and needs further investigation.

Closed form expressions for the LSD or for its moments do not seem to be easily obtainable. We provide
a few simulations to demonstrate the nature of the LSD and it is an interesting problem to derive detailed
properties of the LSD in any of these cases.

1.5 Examples

In this section we will consider some specific nonsymmetric matrices of interest. In particular, letXp be the
asymmetric versions of the four matrices Toeplitz, Hankel,circulant and reverse circulant. Then it turns out

that in Regime II, the LSD for
√

n
p (Ap(Xp)− Ip) exists and is identical to the LSD forn−1/2T

(s)
n obtained

by Bryc, Dembo and Jiang (2006) [7] for the symmetricn × n Toeplitz matrixT
(s)
n . In Regime I, the LSD

for Ap(Xp) exist but they are all different. The proofs of the results given below are presented in Section 5.

1.5.1 The asymmetric Toeplitz matrix

Then × n symmetric Toeplitz matrix is defined asT (s)
n = ((x|i−j|)). It is known that if the input sequence

{xi} has mean zero and variance one and is either independent and uniformly bounded or, is i.i.d., then

n−1/2T (s)
n converges weakly almost surely toLT (say).
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See for example Bose and Sen (2008) [6], Bryc, Dembo and Jiang(2006) [7] and Hammond and Miller
(2005) [10]. It may be noted that the moments ofLT may be represented as volumes of certain subsets of
the unit hypercubes but are not known in any explicit form.

Let
Tp = T = ((xi−j))p×n, Ap(T ) = n−1TpT

′
p.

Note thatTp is the nonsymmetric Toeplitz matrix.

Theorem 1 (i) [Regime I] Assume R1 holds. Ifpn → y ∈ (0,∞) then empirical spectral distribution
FAp(T ) converges in distribution almost surely to a nonrandom distribution which does not depend on the
distribution of{xi}.

(ii) [Regime II] Assume R2 holds. ThenF

q

n
p
(Ap(T )−Ip)

converges in distribution toLT almost surely.

1.5.2 The asymmetric Hankel matrix

Suppose{xi, i = 1,±1,±2, . . .} is an independent input sequence. LetH
(s)
n = ((xi+j)) be then × n

symmetric Hankel matrix. It is known that if{xi} has mean zero and variance one and is either uniformly
bounded or i.i.d., then

Fn−1/2H
(s)
n converges weakly almost surely.

See for example Bryc, Dembo and Jiang (2006) [7] and Bose and Sen (2008) [6].

Now let H = Hp×n be the asymmetric Hankel matrix where the(i, j)th entry isxi+j if i > j and

x−(i+j) if i ≤ j. Let H
(s)
p = ((xi+j))p,n be the rectangular Hankel matrix with symmetric link function.

Let

Ap(H) = n−1HpH
′
p and Ap(H

(s)) = n−1H(s)
p H(s)

p

′
.

We then have the following Theorem.

Theorem 2 (i) [Regime I] Assume R1 holds. Ifpn → y ∈ (0,∞) thenFAp(H) converges almost surely to a
nonrandom distribution which does not depend on the distribution of{xi}.

(ii) [Regime II] Assume R2 holds. ThenF

q

n
p
(Ap(H)−Ip)

converges almost surely toLT . The same limit
continues to hold ifAp(H) is replacedAp(H

(s)).

1.5.3 The asymmetric reverse circulant matrix

ThesymmetricReverse CirculantR(s)
n has the link functionL(i, j) = (i+j) modn. The LSD ofn−1/2R

(s)
n

has been discussed in Bose and Mitra (2003) [5] and Bose and Sen (2008) [6]. In particular it is known that
if {xi} are independent with mean zero and variance1 and are either (i) uniformly bounded or (ii) identically

distributed, then the LSDR of n−1/2R
(s)
n exists almost surely and has the density,

fR(x) = |x| exp(−x2), −∞ < x < ∞

with moments
β2h+1(R) = 0 and β2h(R) = h! for all h ≥ 0.
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Let R
(s)
p be thep × n matrix with link function L(i, j) = (i + j) modn and Rp = Rp×n be the

asymmetricversion ofR(s)
p with the link function

L(i, j) = (i + j) modn for i ≤ j
= −[(i + j) modn] for i > j.

(11)

So, in effect, the rows ofRp are the firstp rows of an (asymmetric) Reverse Circulant matrix. Let

Ap(R) = n−1RpR
′
p and Ap(R

(s)) = n−1R(s)
p R(s)

p

′
.

We then have the following theorem.

Theorem 3 (i) [Regime I] Assume R1 holds. Ifpn → y ∈ (0,∞) thenFAp(R) converges almost surely to a
nonrandom distribution which does not depend on the distribution of{xi}.

(ii) [Regime II] Assume R2 holds. ThenF

q

n
p
(Ap(R)−Ip)

converges almost surely toLT . The same limit
continues to hold ifAp(R) is replacedAp(R

(s)).

1.6 The asymmetric circulant matrix

The square circulant matrix is well known in the literature.Its eigenvalues can be explicitly computed and
are closely related to the periodogram. Its LSD is the bivariate normal distribution. See for example Bose
and Mitra [5]. Its symmetric version is treated in Bose and Sen (2008) [6]. Let

Cp = Cp×n = ((xL(i,j))) where L(i, j) = (n − i + j) modn, and Ap(C) = p−1CpC
′
p.

Theorem 4 (i) [Regime I] Assume R1 holds. Ifpn → y ∈ (0,∞) thenFAp(C) converges almost surely to a
nonrandom distribution which does not depend on the distribution of{xi}.

(ii) [Regime II] Assume R2 holds. ThenF

q

n
p
(Ap(C)−Ip)

converges almost surely toLT .

2 Basic notation, definitions and assumptions

Examples of link functions that correspond to matrices of interest are as follows:

0. Covariance matrix:Lp(i, j) = (i, j).

1. Asymmetric Toeplitz matrix:Lp(i, j) = i − j.

2. Asymmetric Hankel matrix:Lp(i, j) = sgn(i − j)(i + j) where

sgn(l) =

{
1 if l ≥ 0,
−1 if l < 0

(12)

3. Asymmetric Reverse Circulant:Lp(i, j) = sgn(i − j)(i + j) mod n.

4. Asymmetric Circulant:Lp(i, j) = (n + j − i) mod n.

For any setG, #G and |G| will stand for the number of elements ofG. We shall use the following
general assumptions on the link function.

Assumptions on link function L:
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A. There exists positive integerΦ such that for anyα ∈ Z andp ≥ 1,

(i) #{i : Lp(i, j) = α} ≤ Φ for all j ∈ {1, 2, . . . , n} and

(ii) #{j : Lp(i, j) = α} ≤ Φ for all i ∈ {1, 2, . . . , p}.

A′. For anyα ∈ Z andp ≥ 1, #{i : Lp(i, j) = α} ≤ 1 for all j ∈ {1, 2, . . . , n}.

B. kpαp = O(np) where

kp = #{α : Lp(i, j) = α, 1 ≤ i ≤ p, 1 ≤ j ≤ n}, αp = max
α∈Z

|L−1
p (α)|.

Assumption A stipulates that with increasing dimensions, the number of times any fixed input variable
appears in any given row or column, remains bounded. Assumption A′ stipulates that no input appears
more than once in any column. Assumption B makes sure that no particular input appears too many times
in the matrix. Clearly A′ implies A(i) but B is not related to either A or A′. Consider the link function
Lp(i, j) = (1, 1) if i = j andLp(i, j) = (i, j) if i 6= j. This link function satisfies A(ii) and A′ but not
B. On the other hand ifLp(i, j) = 1 for all (i, j) then it satisfies B but not A. It is easy to verify that the
link functions listed above satisfy these assumptions. It may also be noted that the symmetric Toeplitz link
function doesnot satisfy Assumption A′.

Towards applying the moment method, we need a few notions, most of which are given in details in Bose
and Sen (2008) [6] in the context of symmetric matrices. These concepts and definitions will remain valid
in Regime II also, with appropriate changes.

The trace formula. Let Ap = n−1XpX
′
p. Then theh-th moment of ESD ofAp is given by

p−1 Tr Ah
p = p−1n−h

∑

1≤i1,i2,...,ih≤n

xLp(i1,i2)xLp(i3,i2) · · · xLp(i2h−1,i2h)xLp(i1,i2h). (13)

Circuits . Any functionπ : {0, 1, 2, · · · , 2h} → Z+ is said to be acircuit if

(i) π(0) = π(2h),

(ii) 1 ≤ π(2i) ≤ p ∀ 0 ≤ i ≤ h and

(iii) 1 ≤ π(2i − 1) ≤ n ∀ 1 ≤ i ≤ h.

The lengthl(π) of π is taken to be(2h). A circuit depends onh andp but we will suppress this depen-
dence.

Matched Circuits. Let

ξπ(2i − 1) = L(π(2i − 2), π(2i − 1)), 1 ≤ i ≤ h and

ξπ(2i) = L(π(2i), π(2i − 1)), 1 ≤ i ≤ h.

These will be calledL-values.

A circuit π is said to have anedge of ordere (1 ≤ e ≤ 2h) if it has anL-value repeated exactlye times.
Any π with all e ≥ 2 will be calledL-matched(in shortmatched). For any suchπ, given anyi, there is at
least onej 6= i such thatξπ(i) = ξπ(j).

Define for any circuitπ,

Xπ =

h∏

i=1

xξπ(2i−1)xξπ(2i). (14)
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Due to the mean zero and independence assumption, ifπ has at least one edge of order one thenE(Xπ) = 0.

Equivalence relation on circuits. Two circuitsπ1 andπ2 of same length are said to be equivalent if
theirL values agree at exactly the same pairs(i, j). That is, iff

{
ξπ1(i) = ξπ1(j) ⇔ ξπ2(i) = ξπ2(j)

}
. This

defines an equivalence relation between the circuits.

Words. Equivalence classes arising from the above equivalence relation may be identified with par-
titions of {1, 2, · · · , 2h}— to any partition we associate aword w of length l(w) = 2h of letters where
the first occurrence of each letter is in alphabetical order.For example, ifh = 3, then the partition
{{1, 3, 6}, {2, 4}, {5}} is represented by the wordababca. Let |w| denote the number of different letters
that appear inw.

The notion of ordere edges, matching, nonmatching forπ, carries over to words in a natural manner. For
instance, the wordababa is matched. The wordabcadbaa is nonmatched, has edges of order1, 2 and4 and
the corresponding partition is{{1, 4, 7, 8}, {2, 6}, {3}, {5}}. As pointed out, it will be enough to consider
only matched words sinceE(Xπ) = 0 for nonmatched words. The following fact is obvious.

Word Count .

#{w : w is of length 2h and has only order2 edges with|w| = h} =
(2h)!

2hh!
. (15)

The classΠ(w). Let w[i] denote thei-th entry ofw. The equivalence class corresponding tow will be
denoted by

Π(w) = {π : w[i] = w[j] ⇔ ξπ(i) = ξπ(j)}.
The number of partition blocks corresponding tow will be denoted by|w|. If π ∈ Π(w), then clearly the
number of distinctL-values equals|w|. Notationally,

#{ξπ(i) : 1 ≤ i ≤ 2h} = |w|.

Note that now, with the above definition, we may rewrite the trace formula as

p−1 Tr Ah
p = p−1n−h

∑

π: π circuit

Xπ = p−1n−h
∑

w

∑

π∈Π(w)

Xπ,

where the first sum is taken over all words with length(2h). After taking expectation, only the matched
words survive and

E
[
p−1 Tr Ah

p

]
= p−1n−h

∑

w matched

∑

π∈Π(w)

EXπ.

To deal with (M4), we need multiple circuits. The following notions will be useful for dealing with
multiple circuits:

Jointly Matched and Cross-matched Circuits. k circuitsπ1, π2, · · · , πk are said to bejointly matched
if eachL-value occurs at least twice across all circuits. They are said to becross-matchedif each circuit has
at least oneL-value which occurs in at least one of the other circuits.

The classΠ∗(w). Define for any (matched) wordw,

Π∗(w) = {π : w[i] = w[j] ⇒ ξπ(i) = ξπ(j)}. (16)
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Note thatΠ∗(w) ⊇ Π(w). However, as we will see,Π∗(w) is equivalent toΠ(w) for asymptotic considera-
tions, but is easier to work with.

Vertex and generating vertex. Eachπ(i) of a circuitπ will be called avertex. Further,π(2i), 0 ≤ i ≤ h
will be called even verticesor p-verticesandπ(2i−1), 1 ≤ i ≤ h will be called odd verticesor n-vertices.

A vertexπ is said to begeneratingif either i = 0 or w[i] is the position of thefirst occurrence of a letter.
For example, ifw = abbcab thenπ(0), π(1), π(2), π(4) are generating vertices.

We will call an odd generating vertexπ(2i − 1) Type I if π(2i) is also an even generating vertex.
Otherwise we will callπ(2i − 1) a Type II odd generating vertex.

Obviously, number of generating vertices inπ is |w| + 1. By Assumption A onL function given earlier,
a circuit of a fixed length is completely determined,up to a finitely many choicesby its generating vertices.
Hence, in Regime I under the assumption A, we obtain the simple but crucial estimate

|Π∗(w)| = O(n|w|+1).

Let [a] denote the integer part ofa. For Regime II, we will further assume A′. In that case, it shall be shown
that

|Π∗(w)| = O(p1+[ |w|+1
2

]n[ |w|
2

]).

3 Regime I

In Regime I,p → ∞ such thatp/n → y ∈ (0,∞) and we consider the spectral distribution ofAp =
Ap(X) = n−1XpX

′
p. There are two main theorems in this section. Theorem 5 is proved under Assumption

B. We show that the input sequence may be taken to be bounded without loss of generality. This allows
us to deal with bounded sequences in all examples later. Thisresult is proved sketchily in Bose and Sen
(2008) [6], with special reference to the sample covariancematrix. We provide a detailed proof for clarity
and completeness. Theorem 6 is proved under Assumptions A and B. We show that the ESD of{Ap(X)} is
almost surely tight and any subsequential limit is sub Gaussian. Invoking the trace formula, we show that the
LSD exists iff the moments converge. Further, in the limit, only pair matched terms potentially contribute.

To prove Theorem 5, we will need the following notion and result.

Thebounded Lipschitz metricdBL is defined on the space of probability measures as:

dBL(µ, ν) = sup{
∫

fdµ −
∫

fdν : ||f ||∞ + ||f ||L ≤ 1} (17)

where
||f ||∞ = sup

x
|f(x)|, ||f ||L = sup

x 6=y
|f(x) − f(y)|/|x − y|.

Recall that convergence indBL implies weak convergence of measures.

The following inequalities provide estimate of the metric distancedBL in terms of trace. Proofs may be
found in Bai and Silverstein (2006) [2] or Bai (1999) [1] and uses Lidskii’s theorem (see Bhatia, 1997, page
69) [4].

Lemma 1 (i) SupposeA,B aren × n symmetric real matrices. Then

d2
BL(FA, FB) ≤

(
1

n

n∑

i=1

|λi(A) − λi(B)|
)2

≤ 1

n

n∑

i=1

(λi(A) − λi(B))2 ≤ 1

n
Tr(A − B)2. (18)
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(ii) For any square matrixS, let FS denote its empirical spectral distribution. SupposeX and Y are
p × n real matrices. LetA = XX ′ andB = Y Y ′ Then

d2
BL(FA, FB) ≤

(
1

p

p∑

i=1

|λi(A) − λi(B)|
)2

≤ 2

p2
Tr(A + B)Tr[(X − Y )(X − Y )′]. (19)

Theorem 5 Let p → ∞, p
n → y ∈ (0,∞) and Assumption B holds so thatαpkp = O(np). Suppose for

every bounded mean zero and variance one i.i.d. input sequence,Fn−1XpX′
p converges weakly to some fixed

nonrandom distributionG almost surely. Then the same limit continues to hold if the input sequence is i.i.d.
with mean zero and variance one.

Proof of Theorem 5. Without loss of generality we shall assume thatZ = Z and also writeX for Xp.
For t > 0, denote

µ(t) = E[x0I(|x0| > t)] = −E[x0I(|x0| ≤ t)]

and let
σ2(t) = Var(x0I(|x0| ≤ t)) = E[x2

0I(|x0| ≤ t)] − µ(t)2.

SinceE(x0) = 0 andE(x2
0) = 1, we haveµ(t) → 0 andσ(t) → 1 as t → ∞ andσ2(t) ≤ 1. Define

bounded random variables

x∗
i =

xiI(|xi| ≤ t) + µ(t)

σ(t)
=

xi − x̄i

σ(t)
wherex̄i = xiI(|xi| > t) − µ(t) = xi − σ(t)x∗

i . (20)

It is easy to see thatE(x̄2
0) = 1 − σ2(t) − µ(t)2 → 0 as t tends to infinity. Further,{x∗

i } are i.i.d.
bounded, mean zero and variance one random variables. Let usreplace the entriesxLp(i,j) of the matrixXp

by the truncated versionx∗
Lp(i,j) (respectivelyx̄Lp(i,j) ) and denote this matrix byY (respectivelyX̄p). By

triangle inequality and (19),

d2
BL

(
Fn−1XpX′

p , Fn−1Y Y ′)

≤ 2d2
BL

(
Fn−1XpX′

p , Fn−1σ(t)2Y Y ′)
+ 2d2

BL

(
Fn−1Y Y ′

, Fn−1σ(t)2Y Y ′)

≤ 2

p2n2
Tr(XpX

′
p + σ(t)2Y Y ′)Tr(Xp − σ(t)Y )(Xp − σ(t)Y ′)

+
2

p2n2
Tr(Y Y ′ + σ(t)2Y Y ′)Tr(σ(t)Y − Y )(σ(t)Y − Y )′.

To tackle the first term on the right side above,

Tr(XpX
′
p + σ(t)2Y Y ′)

=
∑p

i=1

∑n
k=1 x2

Lp(i,k) + σ(t)2
∑p

i=1

∑n
k=1 x∗2

Lp(i,k)

≤ αnkp

(∑kp

i=1 x2
i

kp

)
+

p∑

i=1

n∑

k=1

(xLp(i,k) − x̄Lp(i,k))
2

≤ αnkp

(∑kp

i=1 x2
i

kp

)
+ αnkp

(∑kp

i=1 x2
i I{|xi| > t}
kp

)
+ |µ(t)|αpkp

(∑kp

i=1 |xi|
kp

)
+ αpkp

(∑kp

i=1 x̄2
i

kp

)
.

Therefore usingαpkp = O(np) and the SLLN, we can see that(np)−1(Tr(XpX
′
p + σ(t)2Y Y ′)) is

bounded. Now,
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1

np
|Tr(Xp − σ(t)Y )(Xp − σ(t)Y )′| =

1

np
|Tr(X̄pX̄

′
p)| ≤

1

np
αpkp

(
1

kp

kp∑

i=1

x̄2
i

)
,

which is bounded byCE(x̄2
i ) almost surely, for some constantC. Here we use the conditionαpkp = O(np)

and SLLN for{x̄2
i }. SinceE(x̄2

i ) → 0 ast → ∞ we can make the right side tend to 0 almost surely, by first
letting p tend to infinity, and then lettingt tend to infinity. This takes care of the first term.

To tackle the second term,

T2 =
2

n2p2

[
Tr
(
(σ(t)2)Y Y ′ + Y Y ′)

)
Tr
(
(σ(t)Y − Y )(σ(t)Y − Y )′

)]

=
2

n2p2
(σ(t)2 + 1)(σ(t) − 1)2(Tr(Y Y ′))2

≤ 2

n2p2
(σ(t)2 + 1)(σ(t) − 1)2(

p∑

i=1

n∑

k=1

x∗2
Lp(i,k))

2

≤ 2

n2p2
(σ(t)2 + 1)

(σ(t) − 1)2

σ(t)2

[
αpkp

(∑kp

i=1 x2
i

kp

)
+ αpkp

(∑kp

i=1 x2
i I{|xi| > t}
kp

)

+ |µ(t)|αpkp

(∑kp

i=1 |xi|
kp

)
+ αpkp

(∑kp

i=1 x̄2
i

kp

)]2

.

Again using the conditionαpkp = O(np) andσ(t) → 1 ast → ∞ we getT2 → 0 almost surely. This
completes the proof of the theorem. �

To investigate the existence of the LSD ofAp = Ap(X) = (1/n)XpX
′
p, in view of Theorem 5, we shall

assume that the input sequence is i.i.d. bounded, with mean zero and variance 1. Recall the two formulae
given earlier:

p−1 Tr Ah
p = p−1n−h

∑

π: π circuit

Xπ = p−1n−h
∑

w

∑

π∈Π(w)

Xπ,

where the first sum is taken over all words with length(2h) and

E
[
p−1 Tr Ah

p

]
= p−1n−h

∑

w matched

∑

π∈Π(w)

EXπ.

Theorem 6 Let Ap = (1/n)XpX
′
p where the entries ofXp are bounded, independent with mean zero and

variance 1 andLp satisfies Properties A and B. Letp/n → y, 0 < y < ∞. Then

(i) If w is matched word of length(2h) with an edge of order≥ 3, thenp−1n−h
∑

π∈Π(w) EXπ → 0.

(ii) For eachh ≥ 1, ∣∣E
[
p−1 Tr Ah

p

]
−

∑

w matched
|w|=h

p−1n−h|Π∗(w)|
∣∣→ 0.

(iii) For eachh ≥ 1, p−1 Tr Ah
p − E

[
p−1 Tr Ah

p

] a.s.→ 0.

(iv) If we denoteβh = lim supp

∑
w matched
|w|=h

p−1n−h|Π∗(w)|, then{βh}h≥1 satisfies Carleman’s condition.
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The sequence of ESD,{FAp(X)} is almost surely tight. Any subsequential limit is sub Gaussian. The LSD
exists iff limp

∑
w matched
|w|=h

p−1n−h|Π∗(w)| exists for eachh. The same LSD continues to hold if the input

sequence is i.i.d. (not necessarily bounded) with mean zeroand variance one.

Remark 1 Without assuming anything further on the link functionLp, the above limits need not exist.
However in Section 1.5, we have seen several examples where the limits do indeed exist.

Proof of Theorem 6. For the special case of covariance matrix, a proof can be found in Bose and Sen
(2008) [6]. The same arguments may be adapted to general linkfunctions. For the sake of completeness,
here are the essential steps.

Recall that circuits which have at least one edge of order 1 contribute zero. Thus, consider all circuits
which have at least one edge of order at least 3 and all other edges of order at least 2. LetNh,3+ be the
number of such circuits of length(2h).

Suppose first thatp = n. Theny = 1. In this caseπ has uniform range,1 ≤ π(i) ≤ n, 1 ≤ i ≤ 2h.
Then, from the arguments of Bryc, Dembo and Jiang (2006) [7],n−(1+h)Nh,3+ → 0.

Now for generaly > 0, the range ofπ(i) is not same for everyi. For odd vertices, it is from1 to n and
for even vertices, it is1 to p. However, this case is easily reduced to the previous case (p = n) as follows:
let Π̃(w) be the possibly larger class of same circuits but with range1 ≤ π(i) ≤ max(p, n), 1 ≤ i ≤ 2h.
Then, there is a constantC, such that

p−1n−h
∑

w has one edge
of order at least 3

|Π(w)| ≤ C[max(p, n)]−(h+1)
∑

w has one edge
of order at least 3

|Π̃(w)| → 0

from the previous case. This proves (i). Statement (ii) is then a consequence.

For (iii), it is enough to show that

E
[
p−1 Tr Ah

p − Ep−1 Tr Ah
p

]4
= O(p−2).

The proof is essentially same as the proof of Lemma 2 (b) in Bose and Sen (2008) [6]. For the sake of
completeness, we give the full proof here. We write the fourth moment as

1

p4
E
[
TrAh

p − E(TrAh
p)
]4

=
1

p4n4h

∑

π1,π2,π3,π4

E[

4∏

i=1

(Xπi − EXπi)].

If (π1, π2, π3, π4) are not jointly matched, then one of the circuits, sayπj , has anL-value which does not
occur anywhere else. Also note thatEXπj = 0. Hence, using independence,E[

∏4
i=1(Xπi − EXπi)] =

E[Xπj

∏4
i=1,i6=j(Xπi − EXπi)] = 0.

Further, if (π1, π2, π3, π4) is jointly matched but is not cross-matched then one of the circuits, sayπj

is only self-matched, that is, none of itsL-values is shared with those of the other circuits. Then again by
independence,

E[
4∏

i=1

(Xπi − EXπi)] = E[(Xπj − EXπj)]E[
4∏

i=1,i6=j

(Xπi − EXπi)] = 0.

So it is clear that for non-zero contribution, the quadrupleof circuits must be jointly matched and cross
matched. Observe that the total number of edges in each circuit of the quadruple is(2h). So total number of
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edges over 4 circuits is (8h). Since they are at least pair matched, there can be at most(4h) distinct edges i.e.
distinctL-values. In Bryc, Dembo and Jiang (2006) [7] the authors estimated the number of quadruples of
circuits which are jointly matched and cross matched. They used a method of counting which they applied
only to Toeplitz and Hankel link function. But that method works as well for any general link function
satisfying Assumption A. Using this method, we can say that apart fromπ1(0), π2(0), π3(0) andπ4(0)
which are always generating vertices, there can be at most(4h − 2) many generating vertices to determine
(4h) distinctL-values. So total number of generating vertices obtained using Bryc, Dembo and Jiang (2006)
[7] method is at most(4h + 2). Sincep

n → y, 0 < y < ∞, it is easy to see that there is a constantK which
depends ony andh, such that

1

p4
E
[
Tr Ah

p − E(Tr Ah
p)
]4 ≤ K

p4h+2

p4h+4
= O(p−2). (21)

This guarantees that if there is convergence, it is almost sure. So (iii) is proved.

By Assumption A, for any matched wordw of length(2h) with |w| = h, we have|Π∗(w)| ≤ nh+1Φh

which combined with the fact (15) yields the validity of Carleman’s condition, proving (iv).

The other claims of the theorem are easy consequences of all the discussion so far. �

4 Regime II

In this case,p → ∞ andp/n → 0. From the experience of the existing results for the sample covariance ma-
trix (see for example Bai and Silverstein (2006) [2]), the following scaled and centered version is required.
Define

Np = Np(X) = (
n

p
)1/2(

1

n
XpX

′
p − Ip) =

√
n

p
(Ap(X) − Ip). (22)

Straightforward extension of Theorem 5 is not possible to this situation. In Theorem 7 we show how the
matrix Np defined above may be approximated by the following matrixBp = Bp(X) with bounded entries
under additional moment assumption.

(Bp)ij =
1√
np

n∑

l=1

x̂L(i,l)x̂L(j,l), if i 6= j and(Bp)ii = 0, (23)

wherex̃α = xαI(|xα| ≤ ǫpn
1/4), x̂α = x̃α − Ex̃α andǫp will be chosen later.

Theorem 8 establishes the relationship between the existence of the LSD and the limits of the empirical
moments.

In Theorem 9 we prove an interesting result in Regime II. SupposeL(1) andL(2) are two link functions
satisfying Assumptions A(ii), A′ and B and they agree on the set{(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ n andi < j}.
Then we show that the corresponding matricesNp(X) have identical LSD.

In Theorem 10 we work with Assumption A and show the closenessof LSD in probability when two
link functions agree on the above set.

Theorem 7 Let p, n → ∞ so thatp/n → 0 and Assumption R2 holds.SupposeLp satisfies Assumptions A
and B. Then there exists a nonrandom sequence{ǫp} with the property thatǫp ↓ 0 but ǫpp

1/4 ↑ ∞ asp ↑ ∞
such thatD(FBp , FNp) → 0 a.s. whereD is the metric for convergence in distribution on the space ofall
probability distribution functions.

15



Proof of Theorem 7. Let

X̃p = ((x̃L(i,j)))1≤i≤p,1≤j≤n and Ñp =
1√
np

(X̃pX̃
′
p − nIp).

sup
x

|FNp(x) − F Ñp(x)| ≤ p−1rank(Xp − X̃p) ≤ p−1
p∑

i=1

n∑

j=1

ηL(i,j) where ηα = I(|xα| > ǫpn
1/4).

The first inequality above follows from Bai (1999) [1, Lemma 2.6].

Write qp = supα P(|xα| > ǫpn
1/4). We claim that there exists a sequenceǫp ↓ 0 going to zero arbitrarily

slowly such that
qp ≤ ǫpn

−(1+1/λ)+δ/8. (24)

To establish the claim, for simplicity, assumen = n(p) is an increasing function ofp. Fix anyǫ > 0.
We have

n(1+1/λ)+δ/8 sup
α

P(|xα| > ǫn1/4) ≤ ǫ−4(1+1/λ)−δ/2 sup
α

E|xα|4(1+1/λ)+δ/2
I(|xα| > ǫn1/4) → 0 (25)

since the random variables{|xα|4(1+1/λ)+δ/2} are uniformly integrable.

Givenm ≥ 1, by (25) find an integerpm such thatn ≥ nm := n(pm) implies

n(1+1/λ)+δ/8 sup
α

P(|xα| > m−1n1/4) ≤ m−1.

Defineǫp = 1/m if pm ≤ p < pm+1 andǫp = n(p1)
(1+1/λ)+δ/8 for p < p1. Note that by choosing the

integers in the sequencep1 < p2 < · · · as large as we want, we can makeǫp go to zero as slowly as we like.
Clearly,ǫp satisfies the inequality (24).

For anyβ > 0, and withYi independent Bernoulli withE(Yi) ≤ qp,

P(sup
x

|FNp(x) − F Ñp(x)| > β) ≤ P(p−1
p∑

i=1

n∑

j=1

ηL(i,j) > β)

≤ P(αpp
−1

kp∑

i=1

Yi > β)

≤ (βp)−1αp

kp∑

i=1

EYi by Markov inequality

≤ (βp)−1αpkpqp

≤ Cnqp = o(n−(1/λ+δ/8)) = o(p−(1+λδ/8))

where the constantC is such thatαpkp ≤ Cβnp. Hence by Borel-Cantelli lemma,

sup
x

|FNp(x) − F Ñp(x)| → 0 a.s.

Let

X̂p = ((x̂L(i,j)))1≤i≤p, 1≤j≤n and N̂p =
1√
np

(X̂pX̂
′
p − nIp).
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Using Lemma 1 (i) and (ii),

sup
x

|F N̂p(x)−F Ñp(x)| ≤
(
p−1

p∑

i=1

|λi(N̂p)− λi(Ñp)
)2 ≤ 1

np3
Tr
(
X̃pX̃

′
p + X̂pX̂

′
p

)
Tr
(
E(X̃p)(E(X̃ ′

p)
)
.

Using the moment condition, the condition on the truncationlevel, the conditionαpkp = O(np), and an
appropriate strong law of large numbers for independent random variables, it is easy to show that the above
expression tends to 0 almost surely. We omit the tedious details.

On the other hand,

d2
BL(F N̂p , FBp) ≤ 1

p
Tr(N̂p − Bp)

2

≤ 1

2np2

p∑

i=1

( n∑

l=1

(x̂2
L(i,l) − Ex̂2

L(i,l))
)2

+
1

2np2

p∑

i=1

( n∑

l=1

(1 − Ex̂2
L(i,l))

)2
= M + N say.

Note that for everyi, j, there existsα such that

0 ≤ 1 − Ex̂2
L(i,j) = E x2

αI(|xα| > ǫpn
1/4) + (E xαI(|xα| > ǫpn

1/4))2 ≤ 1

ǫ2
pn

1/2
(Ex4

α + E
2x2

α). (26)

From (26), it is immediate that

N ≤ n2p

2np2

1

nǫ4
p

(
sup

α
(Ex4

α + E
2x2

α)
)2 → 0 since ǫpp

1/4 → ∞.

Now we will deal with the first term,M .

p∑

i=1

( n∑

l=1

(x̂2
L(i,l) − Ex̂2

L(i,l))

)2

=
∑

α

aα (x̂2
α − Ex̂2

α)2 +
∑

α6=α′
bα,α′ (x̂2

α − Ex̂2
α)(x̂2

α′ − Ex̂2
α′)

= T1p + T2p (say)

whereaα, bα,α′ ≥ 0. Obviously,

#{α ∈ Z : aα ≥ 1} ≤ kp and #{(α,α′) ∈ Z2 : α 6= α′, bα,α′ ≥ 1} ≤ k2
p.

Also, aα ≤ αp for all α andbα,α′ ≤ Φ2αp for all α 6= α′. Hence,

∑

p

1

4n2p4
ET 2

1p =
∑

p

1

4n2p4

∑

α

a2
αE(x̂2

α − Ex̂2
α)4 +

∑

p

1

4n2p4

∑

α6=α′
aαaα′E(x̂2

α − Ex̂2
α)2E(x̂2

α′ − Ex̂2
α′)2

≤
∑

p

α2
pkp

4n2p4
sup

α
E(x̂2

α − Ex̂2
α)4 +

∑

p

α2
pk

2
p

4n2p4
sup

α
E

2(x̂2
α − Ex̂2

α)2

≤ sup
α

∑

p

α2
pkp

4n2p4
(n1/4ǫp)

4
Ex4

α + sup
α

∑

p

α2
pk

2
p

4n2p4
E

2x4
α < ∞

where we use the fact thatαpkp = O(np) andαp ≤ p. Thus,T1p/(2np2) → 0 a.s.
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It now remains to tackleT2p. Let yα = x̂2
α − Ex̂2

α, α ∈ Z. Then{yα} are mean zero independent
random variables.

∑

p

1

4n2p4
ET 2

2p =
∑

p

1

4n2p4
E(
∑

α6=α′
bα,α′yαyα′)2

≤
∑

p

1

4n2p4

∑

α6=α′
b2
α,α′Ey2

αy2
α′

≤ sup
α

∑

p

k2
pα

2
p

4n2p4
E

2x2
α < ∞.

Thus by Borel-Cantelli lemma,T2p/(np2) → 0 almost surely and this completes the proof. �

Remark 2 (a) From results of Bai and Yin (1988) [3], it is known that forthe special case of sample
covariance matrix, finite fourth moment is needed for the above approximation to work, and inter alia, for
the existence of the LSD almost surely. Here the link function is more general, necessitating slightly higher
moments.

(b) If we carefully follow the above proof, finiteness of the4(1 + 1/λ) + δ-th moment was only needed
in proving thatsupx |FNp(x) − F Ñp(x)| a.s.→ 0. If we impose the weaker assumptionsupα Ex4

α < ∞, then

qp ≤ ǫp/n for suitably chosen sequence{ǫp} ↓ 0 and supx |FNp(x) − F Ñp(x)| P→ 0 holds and hence
D(FBp , FNp) → 0 in probability.

Having approximatedNp by Bp, we now need to establish the behaviour of the moments ofBp. This is
done through a series of Lemma, finally leading to Theorem 8. In the subsequent discussion, we will use
the following notation.

Π6=(w) := {π ∈ Π(w) : π(2i − 2) 6= π(2i) ∀1 ≤ i ≤ h},

Π∗
6=(w) := {π ∈ Π∗(w) : π(2i − 2) 6= π(2i) ∀1 ≤ i ≤ h}.

Analogous toΠ(w) andΠ∗(w), we define, for several wordsw1, w2, . . . , wk,

Π(w1, w2, . . . , wk) := {(π1, π2, . . . , πk) : wi[s] = wj[ℓ] ⇔ ξπi(s) = ξπj(ℓ), 1 ≤ i, j ≤ k},

Π∗(w1, w2, . . . , wk) := {(π1, π2, . . . , πk) : wi[k] = wj[ℓ] ⇒ ξπi(k) = ξπj(ℓ), 1 ≤ i, j ≤ k}.
(Definition of ξπ has been given earlier.)

Moreover,

Π6=(w1, w2, . . . , wk) :=
{
(π1, π2, . . . , πk) ∈ Π(w1, w2, . . . , wk) : πi(0) 6= πi(2), . . . , πi(2h − 2) 6=

πi(2h), 1 ≤ i ≤ k
}
.

For Lemma 2-5, we will always assume that the link function L satisfies Assumption A(ii) and A′.

Lemma 2 Fix h ≥ 1 and a matched wordw of length2h. Then we have

|Π6=(w)| ≤ Khp1+[
|w|+1

2
]n[

|w|
2

], (27)

whereKh is some constant depending onh.
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Proof of Lemma 2. Let k be the number of odd generating vertices, denoted byπ(2i1 − 1), π(2i2 −
1), . . . , π(2ik − 1) where1 ≤ i1 < i2 < . . . < ik < h. We wish to emphasize thatik < h since
{ξπ(2h − 1), ξπ(2h)} cannot be a matched edge asξπ(2h − 1) 6= ξπ(2h) by A′.

Recall the definition of Type I and Type II generating vertex given in Section 2. Lett be the number of
Type I odd generating vertices. Since total number of generating vertices apart fromπ(0) is |w|, we have
t ≤ [|w|/2].

Now, fix a Type II generating vertexπ(2i − 1). Also, suppose we have already made our choices for the
verticesπ(j), j < 2i − 1 which come beforeπ(2i − 1). Sinceπ(2i) is not a generating vertex,

ξπ(2i) = ξπ(j) for some j < 2i − 1. (28)

(Note that sinceπ(2i − 2) 6= π(2i), we cannot haveξπ(2i) = ξπ(2i − 1) by Assumption A′). Now
that the value ofξπ(j) has been fixed, for each value ofπ(2i), there can be at mostΦ many choices for
π(2i − 1) such that (28) is satisfied. Thus, we can only have at mostpΦ many choices for the generating
vertexπ(2i − 1). In short, there are onlyO(p) possibilities for a Type II odd generating vertex to choose
from.

With the above crucial observation before us, it is now easy to conclude

|Π6=(w)| = O(p#even generating vertices+#Type II vertices n#Type I vertices) = O(p1+[ |w|+1
2

]n[ |w|
2

]).

�

Lemma 3 (i) For everyh ≥ 1 even,

∣∣p−1
E Tr Bh

p −
∑

w matched, |w|=h

p−1−h/2n−h/2|Π∗
6=(w)|

∣∣→ 0.

(ii) For everyh ≥ 1 odd,limp→∞ p−1
E TrBh

p = 0.

Proof of Lemma 3. Let X̂π be as defined in (14) withxα replaced bŷxα. From the fact thatEx̂α = 0 and
Bii = 0 for all i, we have

p−1
E Tr Bh

p = p−(1+h/2)n−h/2
∑

w matched

∑

π∈Π(w),
π(2i−2)6=π(2i), ∀ 1≤i≤h

EX̂π.

Fix a matched wordw of length2h. It induces a partition on2h L-valuesξπ(1), ξπ(2), ξπ(3), . . . , ξπ(2h)
resulting in|w| many groups (partition blocks) where the values ofξπ within a group are same but across
the group they are different. LetCk be the number of groups of sizek. Clearly,

C2 + C3 + · · · + C2h = |w| and 2C2 + 3C3 + · · · + 2hC2h = 2h.

Note that
sup

α
|Ex̂2

α − 1| = o(1) and sup
α

E|x̂α|k ≤ (ǫpn
1/4)k−2 ∀ k ≥ 2.

Thus ifπ ∈ Π(w),

E|x̂ξπ(1)x̂ξπ(2) . . . x̂ξπ(2h)| ≤ (ǫpn
1/4)0.C2+1.C3+...+(2h−2).C2h ≤ (ǫpn

1/4)2h−2|w|.
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Using Lemma 2,

∑

π∈Π(w),
π(2i−2)6=π(2i) ∀ 1≤i≤h

E|x̂ξπ(1)x̂ξπ(2) . . . x̂ξπ(2h)| ≤ (ǫpn
1/4)2h−2|w|

(
Khp1+[ |w|+1

2
]n[ |w|

2
]
)

= (ǫp)
2h−2|w|nh/2−(|w|/2−[|w|/2])p1+[ |w|+1

2
].

Case I. Either|w| < h or |w| = h with h odd. Then

1

p1+h/2nh/2

∑

π∈Π(w),
π(2i−2)6=π(2i) ∀ 1≤i≤h

E|x̂ξπ(1)x̂ξπ(2) . . . x̂ξπ(2h)| → 0. (29)

Case II. If |w| = h with h even, then

lim
p

1

p1+h/2nh/2

∑

π∈Π(w),
π(2i−2)6=π(2i) ∀ 1≤i≤h

Ex̂ξπ(1)x̂ξπ(2) . . . x̂ξπ(2h)

= lim
p

1

p1+h/2nh/2
|Π6=(w)|(1 + o(1))h

= lim
p

1

p1+h/2nh/2
|Π6=(w)|

= lim
p

1

p1+h/2nh/2
|Π∗

6=(w)|.

This completes the proof. �

Fix jointly matched and cross-matched words(w1, w2, w3, w4) of length(2h) each. Let

κ = total number of distinct letters inw1, w2, w3 and w4. (30)

Lemma 4 For some constantsCh depending onh,

#
{
(π1, π2, π3, π4) ∈ Π(w1, w2, w3, w4) : πi(0) 6= πi(2), . . . , πi(2h − 2) 6= πi(2h), i = 1, 2, 3, 4

}

≤
{

Chp2+2hn2h if κ = 4h or 4h − 1

Chp4+[ 1+κ
2

]n[ κ
2
] if κ ≤ 4h − 2.

(31)

Proof of Lemma 4. Case I. κ = 4h − 1 or 4h. Since the circuits are cross-matched, upon reordering
the circuits, making circular shift and counting anti-clockwise if necessary, we may assume, without loss of
generality,ξπ1(2h) does not match with anyL-value inπ1 whenκ = 4h − 1. Because of cross matching,
whenκ = 4h, we may further assume thatξπ2(2h) does not match with anyL-value inπ1 or π2.

We first fix the values of thep-verticesπi(0), 1 ≤ i ≤ 4, all of which are even generating vertices. Then
we scan all the vertices from left to right, one circuit afteranother. We will then, as argued in Bryc, Dembo
and Jiang (2006) [7], obtain a total(4h + 2) generating vertices instead of(4h + 4) generating vertices
which we would have obtained by usual counting.

In our dynamic counting, we scan theL-values in the following order:

ξπ1(1), ξπ1(2), ξπ1(3), . . . , ξπ1(2h), ξπ2(1), ξπ2(2), . . . , ξπ2(2h), ξπ3(1), . . . , ξπ4(2h).
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From the arguments given in Lemma 2, it is clear that for an oddvertexπi(2j − 1) to be Type I, both
ξπi(2j − 1) andξπi(2j) have to be the first appearances of two distinctL values. So, total number of Type I
n-generating vertices is at mostκ/2.

Case II. κ ≤ 4h − 2. We again apply the crucial fact that for an odd vertexπi(2j − 1) to be Type
I, we need bothξπj(2j − 1) and ξπj(2j) to be the first appearances of two distinctL-values, while the
circuits being scanned from left to right and one after another. Since there are exactlyκ distinctL-values,
the number of Type I odd vertices is not more thanκ/2. Combining this with the fact that total number of
generating vertices equals(κ + 4), we get the required bound. �

Lemma 5 For each fixedh ≥ 1,

∞∑

p=1

E
[
p−1(Tr Bh

p − E(Tr Bh
p ))
]4

< ∞.

Proof of Lemma 5. As argued earlier and from the fact that the diagonal elements ofBp are all zero, we
have

E
[
p−1(Tr Bh

p − E(Tr Bh
p ))
]4

= p−4−2hn−2h
∑

∗

∗∑
E
( 4∏

i=1

(X̂πi − EX̂πi)
)

where the outer sum
∑

∗ is over all quadruples of words(w1, w2, w3, w4), each of length2h and which are
jointly matched and cross-matched. The inner sum

∑∗ is over all quadruples of circuits
{
(π1, π2, π3, π4) ∈

Π(w1, w2, w3, w4) : πi(0) 6= πi(2), . . . , πi(2h − 2) 6= πi(2h), i = 1, 2, 3, 4
}

.

Note that by definition ofκ, κ ≤ 4h for any jointly matched quadruple of words(w1, w2, w3, w4) of
total length8h. Fix w1, w2, w3, w4, jointly matched and cross-matched.

Case I. κ = 4h or 4h − 1. Then the maximum power with which anŷxα can occur in
∏4

i=1 X̂πi is
bounded by4. But sincesupα E(x̂α)4 < ∞, we immediately have|E

(∏4
i=1(X̂πi − EX̂πi)

)
| < ∞. Thus,

by Lemma 4,

p−4−2hn−2h
∑

∗: κ∈{4h−1,4h}

∗∑
E
( 4∏

i=1

(X̂πi − EX̂πi)
)

= p−4−2hn−2h O(p2+2hn2h) = O(p−2).

Case II. Suppose now thatκ = 4h − k, k ≥ 2. Borrowing notation from Lemma 3, we have

C2 + C3 + . . . + C8h = κ and 2C2 + 3C3 + . . . + 8hC8h = 8h.

These two equations immediately give

C3 + 2C4 + . . . + (8h − 2)C8h = 8h − 2κ = 2k.

It is also easy to see that

C2k+2+i = 0 ∀ i ≥ 1 and C5 + 2C6 + . . . + (2k − 2)C2k+2 ≤ 2k − 2.

Since the input variables are truncated atǫpn
1/4 and sincesupα E(x4

α) < ∞,

sup
α

E|
4∏

i=1

X̂πi | ≤ E(x̂α)4n
C5+2C6+...+(2k−2)C2k+2

4 = O(n
2k−2

4 ).
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Thus, by Lemma 4, for anyk ≥ 2,

p−4−2hn−2h
∑

∗: κ∈{4h−k}

∗∑
E
( 4∏

i=1

(X̂πi − EX̂πi)
)
≤ p−4−2hn−2hChp4+[ 4h−k+1

2
]n[ 4h−k

2
] O(n

k−1
2 )

= O(p−4−2hp−2hp4+[ 4h−k+1
2

]p[ 4h−k
2

] O(p
k−1
2 )

= O(p−4−4hp(4+4h−k)+ k−1
2 ) = O(p−(k

2
+1)).

For a quick explanation of the first equality above, just notethat total power ofn in the previous expression
is negative. �

We are now ready to summarize the results of Theorem 7 and Lemma 2–5 in the following theorem in
Regime II.

Theorem 8 Let p, n → ∞ so thatp/n → 0 and Assumption R2 holds. SupposeLp satisfies Assumptions
A(ii), A′ and B. Suppose{ǫp} satisfying{ǫp} ↓ 0 andǫpp

1/4 → ∞ is appropriately chosen. Then

(i) For everyh ≥ 1 even,

p−1
E TrBh

p −
∑

w matched, |w|=h

p−(1+h/2)n−h/2|Π∗
6=(w)| → 0.

(ii) For everyh ≥ 1 odd,limp→∞ p−1
E TrBh

p = 0.

(iii) For eachh ≥ 1, p−1 TrBh
p − Ep−1 TrBh

p
a.s.→ 0.

(iv) β2h ≡ lim supp

∑
w matched
|w|=2h

p−(1+h)n−h|Π∗
6=(w)|, satisfies Carleman’s condition.

As a consequence, the sequence{FNp} is almost surely tight. Every subsequential limit is symmetric
and sub Gaussian. The LSD of{FNp} exists almost surely, ifflim

∑
w matched
|w|=2h

p−(1+h)n−h|Π∗
6=(w)|

exists. These give the (2h)th moment of the LSD.

Below we will deal with two matrices with different link functions L(1) or L(2). The corresponding
relevant quantities will now be denoted with added superscripts (1) and(2) respectively.

Theorem 9 LetL(1) andL(2) be two link functions satisfying Assumptions A(ii),A′ and B and agreeing on
the set{(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ n, i < j}. Then, for each matched wordw of length(4h) with
|w| = 2h,

1

ph+1nh

∣∣Π∗(1)
6= (w) − Π∗(2)

6= (w)
∣∣→ 0.

Hence, in Regime II under Assumption R2,FN
(i)
p , i = 1, 2 have identical asymptotic behaviour.

Proof of Theorem 9. Define for each link functionL(i), i = 1, 2

Γ
(i)
j := {π ∈ Π∗(i)

6= (w) : 1 ≤ π(2j + 1) ≤ p}, j = 1, 2, . . . , 2h.

Now, it is enough to prove that for a fixedj,

1

ph+1nh
|Γ(i)

j | → 0.
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Consider the transformationπ 7→ π̂, whereπ̂ is also a circuit with

π̂(0) = π(2j), π̂(1) = π(2j + 1), . . . , π(4h − 1) = π(2j − 1), π̂(4h) = π(2j).

Then it is easy to show that the mapπ 7→ π̂ is a bijection betweenΓ(i)
j andΓ

(i)
1 and therefore,|Γ(i)

j | =

|Γ(i)
1 |.
Observe thatπ(1) is always a Type I odd generating vertex. By Lemma 2, we have|Π∗(i)(w)| =

O(ph+1nh) . Since, in the definition ofΓ(i)
1 we are restricting one of the Type I odd generating vertex to be

ap generating vertex, we are going to lose a factor ofn in the bound and pick up a factor ofp instead. Thus,
|Γ(i)

1 | = O(ph+2nh−1) and hence
1

ph+1nh
|Γ(i)

j | = O
( p

n

)
→ 0.

�

The symmetric Toeplitz link functionL(i, j) = |i − j| does not satisfy Assumption A′ but the asym-
metric Toeplitz link functionL(i, j) = i − j does. Hence the above result is not applicable for this pair
of link functions. However, under Assumption A, we can directly claim the closeness of LSD, but only in
probability.

Theorem 10 Assume{xα} are independent with mean zero andsupα Ex4
α < ∞. SupposeL(1) andL(2)

are two link functions such thatL(1)(i, j) = L(2)(i, j) on the set{(i, j) : 1 ≤ i ≤ p, p ≤ j ≤ n} and both
satisfy Assumption A. SetX = ((xL(1)(i,j)))p×n andY = ((xL(2)(i,j)))p×n. Then

dBL

(
F

q

n
p
(Ap(X)−Ip)

, F

q

n
p
(Ap(Y )−Ip)

)
P→ 0.

Proof of Theorem 10 Let X = [X0 : Z] andY = [Y0 : Z] whereX0 andY0 arep × p sub-matrices ofX
andY respectively. Note that

Ed2
BL

(
F

q

n
p
(Ap(X)−Ip)

, F

q

n
p
(Ap(Y )−Ip)

)
≤ n−1p−2

ETr(XX ′ − Y Y ′)2

= n−1p−2
ETr(X0X

′
0 − Y0Y

′
0)

2 ≤ 2n−1
(
ETr(p−1X0X

′
0)

2 + ETr(p−1Y0Y
′
0)2
)
.

Calculations similar to those done in Regime I now imply that

Ep−1Tr(p−1X0X
′
0)

2 ≤ K and Ep−1Tr(p−1Y0Y
′
0)

2 ≤ K,

for some constantK. Sincep/n → 0, the result follows immediately. �

5 Proofs of Theorems 1-4

For convenience of counting, in Regime I, the pair matched words are classified as follows. In a pair matched
circuit of length(2h), there areh distinctL-values and hence(h + 1) generating vertices. But the number
of odd (or even) generating vertices depends on the corresponding word. Note that there is always at least
one even generating vertexπ(0), and the number of even generating vertices is bounded byh. Let

Wt,h = {w : w is pair-matched of length2h with (t + 1) evengenerating vertices}. (32)

23



Obviously the total number of odd generating vertices for a word inWt,h is (h − t).

Symmetric words. In most of the examples, due to the circuit restriction, only words where each letter
appears in an odd and an even position have positive contribution in the limit. We call thesesymmetric
words. Let

W0
t,h = {w : w ∈ Wt,h andw is symmetric}.

5.1 Proof of Theorem 1

(i) In view of Theorem 6 we will only have to show that, for eachh ≥ 1 and each wordw ∈ Wt,h,
limp p−1n−h|Π∗(w)| exists.

We first show that the circuit condition implies that words which arenot symmetricdo not contribute in
the limit.

Lemma 6 Supposep/n → y ∈ (0, ∞). Let w be any pair-matched word of length(2h) which is not
symmetric. Then in Regime I,

p−1n−h|Π∗(w)| → 0 as p → ∞. (33)

Proof of Lemma 6. Fix a pair-matched non-symmetric wordw of length(2h) and hence|w| = h. LetS
be the set of(h+1) indices corresponding to generating vertices ofw. Now because of the circuit condition
π(0) − π(2h) = 0, we must have

ξπ(1) − ξπ(2) + ξπ(3) − . . . + ξπ(2h − 1) − ξπ(2h) = 0. (34)

Let us enumerateS, left to right, as{0, i1, i2, . . . , ih} and for eachit ∈ S \{0}, let jt be its matching index,
so that,ξπ(it) = ξπ(jt), it < jt.

Sincew is not symmetric, there exists at least one pair of matching indices of the same parity. Because
of equation (34) number of pairs of matchingL-values with odd indices is same as the number of pairs
of matchingL-values with even indices. Consider the setP of all indices ofS \ {0} whose matching
counterpart is of the same parity. Letimax = maxP. Let jmax be the matching index forimax.

So for anyi ∈ S \ {0} with i > imax , ξπ(i) has a matchingL-value with index of opposite parity and
hence if they are substituted in equation (34), they have same value but opposite sign. Therefore, they cancel
out each other.

Now, according to our convention, we start choosing generating vertices from the left end of the circuit.
We stop when we reachπ(imax). By this process we have fully determined the values of{ξπ(t)} for all
t < imax. On the other hand, if we considerξπ(t) with t > imax, then we immediately realize that

1. Either its value is already determined. This is the case when its matching counterpart appears at the
left of ξπ(imax).

2. Or, its matching counterpart has index of opposite parityas we have observed before.

Thus in equation (34), exceptξπ(imax) andξπ(jmax), all other{ξπ(t)} are either already determined or get
cancelled with their own counterpart. So, (34) forcesξπ(imax)+ ξπ(jmax) = 2ξπ(imax) to take some particu-
lar value. Therefore,π(imax) has no free choice though it is a generating vertex. This is a contradiction and
the proof of the Lemma is complete. �
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Therefore, going back to the proof of part (i) of the theorem,

βh = lim
p

h−1∑

t=0

(
p

n
)t
∑

w∈W0
t,h

1

pt+1nh−t
|Π∗(w))|.

Fix aw ∈ W0
t,h. If w[2i] = w[2j + 1] then we have following restriction,

π(2i + 1) − π(2i) = π(2j) − π(2j + 1).

Let G be the set of indices of size(h + 1) corresponding to all generating vertices. It is easy to see
that if we consider the aboveh linear restrictions on the vertices of the circuits and do not take into account
the circuit conditionπ(0) = π(2h), then each dependent vertex can be written in auniquemanner as an
integral linear combination of generating vertices which occur to the left of that particular vertex in the
circuit. Mathematically,

π(i) =
∑

j:j≤i, j∈G

ai,jπ(j) for some ai,j ∈ Z.

Note that fori ∈ G, aj,i = I{i = j} and sincew is symmetric, we haveπ(2h) = π(0) so that the circuit
condition is automatically satisfied.

To compute the scaled limit of|Π∗(w)| introduce the following notation. Define

t2i =
π(2i)

p
, t2i+1 =

π(2i + 1)

n
and yn = p/n.

From the above discussion, ifi 6∈ G∪{2h}, ti can be written in a unique manner as a linear combination of
tG := {tj : j ∈ G}, namely,

t2i−1 = LT
2i−1,n(tG) :=

∑

2j−1∈G, 2j−1≤2i−1

a2i−1,2j−1t2j−1 +
∑

2j∈G, 2j≤i

yna2i−1,2jt2j

t2i = LT
2i,n(tG) :=

∑

2j−1∈G, 2j−1≤2i

(1/yn)a2i,2j−1t2j−1 +
∑

2j∈G, 2j≤i

a2i,2jt2j .

It is obvious that these linear combinationsLT
i,n(tG) depend on the wordw but we suppress this dependence

for notational brevity. Thus the number of elements inΠ∗(w) can be expressed alternatively as follows:

|Π∗(w)| = #
{

(t0, t1, · · · t2h) : t2i ∈ {1/p, 2/p, . . . , p/p}, t2i−1 ∈ {1/n, 2/n, . . . , n/n}

and
p

n
t2i − t2i+1 =

p

n
t2j − t2j−1 if w[2i + 1] = w[2j]

}

= #
{
tG : tg ∈ {1/p, 2/p, . . . , p/p} if g is even andtg ∈ {1/n, 2/n, . . . , n/n} if g is odd, g ∈ G,

0 < LT
i,n(tG) ≤ 1, ∀ i /∈ G ∪ {2h}

}
.

It does not take us long to recognize the above complicated expression as a multi-dimensional Riemann
sum. Therefore from the theory of Riemann integration, its convergence follows and we have

βh =
h−1∑

t=1

yt
∑

w∈W0
t,h

lim
p→∞

1

pt+1nh−t
|Π∗(w)|
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=

h−1∑

t=1

yt
∑

w∈W0
t,h

∫ 1

0

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
h+1

I(0 < LT
i (tG) ≤ 1, ∀ i /∈ G ∪ {2h})dtG,

whereLT
i (tG) is same asLT

i,n(tG) with all yn being replaced byy. This replacement can be justified by
Polya’s theorem as we can think of eachti as a discrete uniform random variable converging to aU(0, 1)
random variable which is continuous. The above argument shows that in caseyn → y ∈ (0,∞), the LSD
of Ap(T ) exists.

(ii) We now consider the casepn → 0 and prove part (ii) of the theorem. In view of Theorem 8, we only
need to show that for each matched word of length(4h), with |w| = 2h,

lim
p→∞

p−(1+h)n−h|Π∗
6=(w)| exists.

Note that if π ∈ Π∗
6=(w), thenξπ(i) 6= ξπ(i + 1) for all i odd. Hence, there can be only two types of

matching between theL-values as listed below:

1. Double bond. A matching is said to have a double bond if there exists two consecutive odd-even
L-values which match pairwise with another two consecutive odd-evenL-values. There can be again
two possibilities,

(a) Crossing. ξπ(2i + 1) = ξπ(2j + 2) andξπ(2i + 2) = ξπ(2j + 1) for somei < j.

(b) Non-crossing. ξπ(2i + 1) = ξπ(2j + 1) andξπ(2i + 2) = ξπ(2j + 2) for somei < j.

2. Single bond. The remaining types of pairing will be termed as single bond. They give rise to follow-
ing type of equations:

ξπ(2i + 1) = ξπ(s) andξπ(2i + 2) = ξπ(t) where{s, t} 6= {2j + 1, 2j + 2} for all j.

Claim. Let w be a matched word of length4h. If w has a single bond, then

lim
p→∞

p−(1+h)n−h|Π∗
6=(w)| = 0.

Proof of the claim. Recall the definition of a Type I generating vertex. It is clear that ifπ(2i − 1) is
Type I, then

ξπ(s) = ξπ(2i − 1) or ξπ(s) = ξπ(2i) ⇒ s > 2i.

We show that number of Type I odd generating vertices is strictly less thanh. Then the proof will follow
immediately since the total number of generating vertices is (2h + 1).

Total number of odd vertices (generating, non-generating together) is(2h). Let us form two mutually
exclusive and exhaustive setsU andV whereU contains all odd vertices involved in double bonds andV
contains all the rest of the odd vertices. Quite clearly, if{ξπ(2u1 − 1), ξπ(2u1)} = {ξπ(2u2 − 1), ξπ(2u2)}
is a double bond withu1 < u2, thenπ(2u1 − 1), π(2u2 − 1) ∈ U andπ(2u1 − 1) is a Type I odd generating
vertex. Thus, total number of Type I odd generating verticesin U is (1/2)|U |. Next we argue that the total
number of Type I generating vertices inV is strictly less than(1/2)|V | and hence, the total number of Type
I odd generating vertices is strictly less thanh.

Note that exactly half of the odd vertices, which are involved in double bond matching, are Type I odd
vertices. Now, let us count the number of Type I odd vertices which are involved in single bond matchings.
We list the Type I odd generating vertices inV as

V1 := {π(2g1 − 1), π(2g2 − 1), . . . , π(2gs − 1)}
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and the rest of the vertices ofV by

V2 := V \ V1 = {π(2d1 − 1), π(2d2 − 1), . . . , π(2dt − 1)}.

For i 6= j, write 2i − 1 ↔ 2j − 1 if {ξπ(2i−1), ξπ(2i)} ∩ {ξπ(2j−1), ξπ(2j)} 6= ∅. From the definition of
Type I odd generating vertex, it is clear that2gi − 1 ↔ 2gj − 1 is not possible.

We claim that2di − 1 ↔ 2gl − 1 and2di − 1 ↔ 2gm − 1, l 6= m cannot occur simultaneously. Because
if that happens, then we have

π(2di − 2) − π(2di − 1) = π(2ga) − π(2ga − 1)
π(2di) − π(2di − 1) = π(2gb − 2) − π(2gb − 1), {a, b} = {l,m}.

Subtracting we get,

π(2gb − 1) − π(2ga − 1) = π(2di − 2) − π(2di) + π(2gb − 2) − π(2ga).

Vertices on the right side are all even and hence the number ofchoices on the right side isO(p). On the
other hand, in the left side we have two Type I odd vertices each of which has free choices of the ordern.
This is an impossibility.

So in summary, the relation↔ associates a vertex inV1 with two vertices inV2 (single bond), but a vertex
in V2 is not associated to two distinct vertices inV1. Therefore,|V1| < |V2|. So the total number of Type I
odd generating vertices inV is strictly less than|V |/2. Thus, total number of Type I odd vertices is strictly
less than(|U | + |V |)/2 = h which concludes the proof of the claim. �

Reverting to the proof of part (ii), we may now, for the rest ofour calculation, consider only those words
which produce no single bond. By the circuit constraint, we have

ξπ(1) − ξπ(2) + . . . + ξπ(2i − 1) − ξπ(2i) + . . . + ξπ(4h − 1) − ξπ(4h) = 0. (35)

Note that ifi forms a non-crossing double bond withj thenξπ(2i − 1) − ξπ(2i) = ξπ(2j − 1) − ξπ(2j). If
w has at least one non-crossing double bond then (35) leads to anontrivial restriction on the vertices of the
circuit reducing the number of even generating vertices by one and thusp−(1+h)n−h|Π∗

6=(w)| → 0. Thus
we may restrict ourselves to those words which give rise to only crossing double bonds. Let us fix one such
word w of length(4h), with |w| = 2h. Now let us consider a pair of equations forming a crossing double
bond:

π(2i) − π(2i + 1) = π(2j + 2) − π(2j + 1)
π(2i + 2) − π(2i + 1) = π(2j) − π(2j + 1), for i < j.

(36)

In the above equationsπ(2i + 1) is a Type I odd generating vertex andπ(2j + 1) is a non generating odd
vertex which pairs up withπ(2i + 1). Note that,

π(2j + 1) = π(2j + 2) − π(2i) + π(2i + 1)
= π(2j) − π(2i + 2) + π(2i + 1).

Since−p < π(2j + 2) − π(2i) < p, if π(2i + 1) is chosen freely betweenp and(n − p), we do not have
any restriction on even vertices imposed by odd vertices, that is, even vertices can be chosen independent of
the choice of odd vertices satisfying the following restrictions:

π(2i) − π(2i + 2) = π(2j + 2) − π(2j). (37)
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But if π(2i + 1) ∈ {1, 2, . . . , p− 1} ∪ {n− p + 1, n− p + 2, . . . , n}, then the choice of even vertices is
restricted by the choice ofπ(2i + 1) because of the constraint1 ≤ π(2j + 1) ≤ n.

Define a new word̂w of length2h, so that

ŵ[i] = ŵ[j] iff w[2i − 1] = w[2j] and w[2i] = w[2j − 1].

It is easy to see that|ŵ| = h. Let π̂ be a circuit of length2h given byπ̂(i) = π(2i).

Since p
n → 0,

p−(1+h)n−h|Π∗
6=(w)| = p−(1+h)n−h|Π∗

6=(w) ∩ {π : p ≤ π(2i − 1) ≤ n − p, ∀1 ≤ i ≤ 2h}| + o(1)

= p−(1+h)|{π̂ : ŵ[i] = ŵ[j] ⇒ π̂(i) − π̂(i + 1) = π̂(j + 1) − π̂(j)}| + o(1).

The above restriction on̂π is precisely the same restriction on pair matched circuits of length2h that is
obtained in the symmetric Toeplitz matrix. See for example Bryc, Dembo and Jiang (2006) [7] and Bose
and Sen (2008) [6]. Also, note that every word of length2h with h letters can be obtained through this

procedure. Therefore, in this case, the LSD of
√

n
p (Ap(T ) − Ip) is LT . �

5.2 Proof of Theorem 2

(i) By Theorem 6, we know that theh-th moment of Hankel LSD is given by

βh = lim
p→∞

h−1∑

t=0

(
p

n
)t
∑

w∈Wt,h

1

pt+1nh−t
|Π∗(w)|. (38)

We note thatΠ∗(w) ⊆ Π∗
H̃

(w) whereΠ∗
H̃

(w) is as defined in (16) with symmetric Hankel link function
L(i, j) = i+ j and each vertex having same range between1 andmax(p, n) since in the latter case we have
more circuits but fewer restrictions. From the arguments given in Bose and Sen (2008) [6] for symmetric
Hankel link function, it follows that for any non-symmetricword w, n−(h+1)|Π∗(w)| → 0. Thus, (38)
reduces to

βh = lim
p→∞

h−1∑

t=0

(
p

n
)t
∑

w∈W0
t,h

1

pt+1nh−t
|Π∗(w)|.

Let us first consider the case when the link function is symmetric Hankel, i.e.L(i, j) = i + j. In that
case for a wordw ∈ W0

t,h, if w[2i] = w[2j + 1], we have the restriction,

π(2i + 1) + π(2i) = π(2j) + π(2j + 1).

Just as in the Toeplitz case, we can express each vertex in a unique manner as an integral linear combination
of generating vertices occurring to its left.

π(i) =
∑

j:j≤i, j∈G

bi,jπ(j) for some bi,j ∈ Z, (39)

with bj,i = I{i = j} if i ∈ G andπ(2h) = π(0) sincew is symmetric.

We scale the vertices as before and call themti. Similar to the Toeplitz case, we defineLH
i,n(tG) as the

linear combination which expressesti in terms of ‘free cordinates’tG andLH
i (tG) as its limiting version. It

immediately yields

lim
p→∞

1

pt+1nh−t
|Π∗(w)| =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
h+1

I(0 < LH
i (tG) ≤ 1, ∀ i /∈ G ∪ {2h})dtG (40)
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Now consider the asymmetric link function. Here instead of calculating the(h + 1)-dimensional Eu-
cledean volume of the entire set

{
0 ≤ LH

i (tG) ≤ 1, ∀ i /∈ S ∪ {2h}
}

, we need to take into account the
restricting hyperplanes that arise from asymmetric natureof the link function since it assumes different
signs around the diagonal. So, unlike the symmetric case, this imposes the following extra restrictions in
addition to the usual equality between twoL-valuesξπ(2i) andξπ(2j + 1):

Either π(2i + 1) ≤ π(2i), π(2j + 1) ≤ π(2j) Or π(2i + 1) > π(2i), π(2j + 1) > π(2j).

Thus the size of the setΠ∗(w) is same as the cardinality of
{
tG : 0 < LH

i,n(tG) ≤ 1, ∀ i /∈ G ∪ {2h},
sgn(LH

2i+1,n(tG) − ynLH
2i,n(tG)) = sgn(LH

2j+1,n(tG) − ynLH
2j,n(tG)) if w[2i + 1] = w[2j]

}
, where each

ti, i ∈ G takes values in{1/n, 2/n, . . . , n/n} or {1/p, 2/p, . . . , p/p} depending on whetheri is odd or
even.

This entire set may be written as a product of indicator functions in terms of{LH
i,n(tG)}, albeit in a

complicated manner. When summed overtG, in the limit this equals the corresponding Riemann integral
where the indicators are replaced by their limits andyn is replaced byy. Let us denote the giant indicator
function byfH(tG). So, we have

βh =

h−1∑

t=1

yt
∑

w∈W0
t,h

lim
p→∞

1

pnh
|Π∗(w)| =

h−1∑

t=1

yt
∑

w∈W0
t,h

∫ 1

0

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
h+1

fH(tG)dtG (41)

(ii) By Theorem 9, it is equivalent to prove the existence of the LSD for the symmetric Hankel case.
Along this line, we can just imitate the argument for the asymmetric Toeplitz matrix in Regime II. Here also
the essential contribution comes from the words having onlycrossing double bonds. But we now have a
different pair of equations instead of (36) in Toeplitz case,

π(2i) + π(2i + 1) = π(2j + 2) + π(2j + 1)
π(2i + 2) + π(2i + 1) = π(2j) + π(2j + 1), for i < j.

(42)

But once we cancel the odd vertices as we did in the Toeplitz case, we are again reduced to the Toeplitz
type restrictions on even vertices. We omit the details. Hence we conclude that the LSD exists and isLT . �

5.3 Proof of Theorem 3

(i) We need to show that for eachh ≥ 1 the following limit exists.

βh = lim
p→∞

h−1∑

t=0

(
p

n
)t
∑

w∈Wt,h

1

pt+1nh−t
|Π∗(w)|. (43)

Similar to Hankel case, we note thatΠ∗(w) ⊆ Π∗
R̃
(w) whereΠ∗

R̃
(w) is as defined in (16) with symmetric

reverse circulant link functionL(i, j) = (i + j) modn. In Bose and Sen (2008) [6], it has been argued
that for symmetric reverse circulant link function, the circuit condition enforces that for any non-symmetric
wordw, n−(h+1)|Π∗(w)| → 0. Thus, the sum in (43) is only over symmetric words,

βh = lim
p→∞

h−1∑

t=0

(
p

n
)t
∑

w∈W0
t,h

1

pt+1nh−t
|Π∗(w)|.
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It now remains to show that for each symmetric wordw ∈ W0
t,h, p−(t+1)n−(h−t)|Π∗(w)| converges.

Let us first consider the symmetric link functionL(i, j) = (i + j) modn. In this case, ifw[i] = w[j],
we obtain the restriction of the following type:

(π(i) + π(i − 1)) modn = (π(j) + π(j − 1)) modn,

which is equivalent to
(π(i) + π(i − 1)) − (π(j) + π(j − 1)) ∈ nZ.

We now have exactly the same set of equations as in the Hankel case (39), with some added relaxations
given as follows

π(i) −
∑

j:j≤i, j∈G

bi,jπ(j) ∈ nZ for all i 6∈ G.

If i 6∈ G∪{2h}, we can choose auniqueintegerki,n = ki,n(π(j) : j ∈ G) such that1 ≤∑j:j≤i, j∈G bi,jπ(j)+
ki,n ≤ n. Thus once we fix the generating vertices, there is exactly onechoice for each of the non-generating
odd vertices. For the non-generating even vertices, thingsare a bit complicated.

For a real numbera, let

℘(a) := max{m ∈ Z : m < a}, ̺(a) := a − ℘(a).

Using these notation,ki,n can be written as the following

ki,n

n
=

1

n
̺




∑

j:j≤i, j∈G

bi,jπ(j)


 .

Now let us fix2i 6∈ G, i 6= h. We have at least[yn] choices for the vertexπ(2i). Moreover, we can have
an additional choice forπ(2i) if

∑

j:j≤2i, j∈G

b2i,jπ(j) + k2i,n ≤ p − [yn]n.

Dividing by n, the above condition can be rewritten as

ynLH
2i,n(tG) + ̺(ynLH

2i,n(tG)) ≤ yn − [yn].

Let S = {2i : 2i /∈ G, i 6= h}. From the above discussion, we can conclude that for the symmetric link
function, the size of the setΠ∗(w) whenw ∈ W0

t,h is given by

[yn]h−t−1pt+1nh−t +
∑

∅6=S′⊆S

#
{
tG : ynLH

2i,n(tG) + ̺(ynLH
2i,n(tG)) ≤ yn − [yn], ∀ 2i ∈ S′

}
.

Note that̺ has discontinuities only at integer points. Therefore, we have the following convergence

lim
p→∞

1

pt+1nh−t
|Π∗(w)|

= [y]h−t−1 +
∑

∅6=S′⊆S

∫ 1

0
· · ·
∫ 1

0
I
(
yLH

2i(tG) + ̺(yLH
2i(tG)

)
≤ y − [y], ∀ 2i ∈ S′)dtG.
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Coming back to the asymmetric case, we now have extra restrictions,

sgn(π(2i + 1) − π(2i)) = sgn(π(2j + 1) − π(2j)) if w[2i] = w[2j + 1].

We can now incorporate restrictions sgn(t2i+1 − yt2i) = sgn(t2j+1 − yt2j) in the integral as we did in the
Hankel case. The even non-generating vertices, except forπ(2h) which is constrained to equal toπ(0), do
not have a unique choice once we determine the generating vertices, instead there are[yn] + 1 choices for
each of them as observed above.

In the symmetric case, for many of the choices, the integrandwas simply equal to1. But here due to the
additional constraints regarding signs, the integrand is not necessarily equal to1 and simplification is not
possible anymore and all the relevant indicators will appear in the integrand. We omit details.

(ii) In Regime II, invoking Theorem 9, it suffices to work withthe symmetric link functionL(i, j) =
(i+j)modn. We again imitate the proof of the Toeplitz case. Here a typical restriction in a word containing
only crossing double bonds reads as,

(π(2i) + π(2i + 1)) modn = (π(2j + 2) + π(2j + 1)) modn
(π(2i + 2) + π(2i + 1)) modn = (π(2j) + π(2j + 1)) modn, for i < j.

(44)

As in the case of Toeplitz and Hankel matrices, we choose generating odd vertices betweenp and(n−p),
the only restriction that even vertices need to satisfy is

(π(2i) − π(2i + 2)) modn = (π(2j + 2) − π(2j)) modn.

But sincep is negligible compared ton, and an even vertex can take values between1 andp, this is equivalent
to usual Toeplitz restriction

(π(2i) − π(2i + 2)) = (π(2j + 2) − π(2j)) .

Hence, the LSD exists and the limit is exactlyLT . �

5.4 Proof of Theorem 4

(i) As in the previous examples, we need to prove that for eachh ≥ 1 the following limit exists.

βh = lim
p→∞

h−1∑

t=0

(
p

n
)t
∑

w∈Wt,h

1

pt+1nh−t
|Π∗(w)|.

We now obtain exactly the same set of equations as in the Toeplitz case with some added relaxations given
as follows

π(i) −
∑

j:j≤i, j∈G

ai,jπ(j) ∈ nZ, for all i 6∈ G.

In the Toeplitz proof, we already argued that for any non-symmetric word,
∑

j:j∈G a2h,jπ(j) = π(0)
induces a nontrivial restriction on the generating vertices. On the other hand, we can have a bounded
(≤ [yn]+1) number of choices for the non-generating vertices. Thus non-symmetric words do not contribute
in the limit.

The rest of the proof is exactly similar to the (symmetric) reverse circulant case. We omit details to avoid
repetition.
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(ii) We note that on and above the diagonal, the circulant link function exactly matches with the link
function L(i, j) = j − i. But the link functionL(i, j) = j − i is nothing but the asymmetric Toeplitz
link function once we index input random variables as{x−i : i ∈ Z}. We may now invoke Theorem 9 to
conclude the proof. �

5.5 Some comments on the four examples

Supposep/n → y ∈ (0,∞) and R1 holds. We make the following observations.

(i) The LSD of Ap(T ) and Ap(H
(s)) are identical. This has been observed in Remark 1.2 of Bryc,

Dembo and Jiang (2006) [7] forp = n. The same argument extends to the general case of rectangular
matrices. As before letTp be thep × n asymmetric Toeplitz matrix andPn be the symmetric permutation

matrix Pn := ((I{i + j = n + 1}))ni,j=1. Then note thatH(s)
p := TpPn is thep × n Hankel matrix, with

symmetric link, for the input sequence{xn+1+k : k ≥ 0}. This impliesH(s)
p H

(s)
p

′
= Tp(PnP ′

n)T ′
p = TpT

′
p

sincePnP ′
n = In. Therefore, the assertion follows.

(ii) The LSD of Ap(C) and Ap(R
(s)) are identical. To see this, first note the distribution of singular

values for thep × n matrix Cp with the usual circulant link functionL(i, j) = (n + j − i) modn will be
unchanged if we use a new link functionL(i, j) = (n + i − j) modn. To convince ourselves, all we need
to do is to take{x(n−k) modn : k = 0, 1, ..., n − 1} as the input sequence in the second case.

Second, observe that if̂Cp is thep × n ‘modified’ circulant matrix with the link functionL(i, j) =

(n+ i−j) modn, thenR
(s)
p := ĈpPn is thep×n symmetric reverse circulant matrix for the input sequence

{x1+k : k ≥ 0}. The claim follows immediately.

(iii) The LSD of Ap(H) and Ap(H
(s)) are different. Note that ifp = n then the square of Wigner

and covariance matrices has the same LSD. It may be tempting to believe that the same holds for other link
function also whenp = n. This is not true and the LSD forAp(H) andAp(H

(s)) are different.

To understand why this is so, note that Bose and Sen (2008) [6]) define a certain class of symmetric
words known asCatalan words. It turns out that for the Wigner link function, the non-Catalan words do not
contribute in the limit and for any Catalan wordw,

lim n−(h+1)|Π∗(w)| = 1

for both,Ap(W ) andAp(W
(s)) and hence the LSD forAp(W ) andAp(W

(s)) are equal.

For the symmetric and asymmetric Hankel link functions, we still have for any Catalan wordw,

lim n−(h+1)|Π∗(w)| = 1.

However, there are now additional contributions from the words which are non-Catalan but symmetric (e.g.
w = abcabc) and they do not agree forH andH(s). Indeed, the contributions from such words for asymmet-
ric link function are strictly less than those for symmetriclink functions due to additional sign constraints.
So,h-th moment of the LSD ofAp(H) is strictly greater thanh-th moment of the LSD ofAp(H

(s)). See
also Figure 3.

(iv) Supposep = yn wherey is an integer. Then theh-th moment of the LSD ofAp(C) has a closed
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form expression and is given by

βC
h =

h−1∑

t=0

yt|W0
t,h|ah−t−1 = yh−1

h−1∑

t=0

|W0
t,h| = h!ah−1.

SupposeY is distributed as the reverse circulant LSDfR(·). Let ξ be a Bernoulli random variable having
mass(1 − 1/y) at zero and independent ofY . ThenAp(C) has LSD∼ aξY 2. This is easily verified by
noting that

E(aξY 2)h = ah
E(ξ)E(Y 2h) = ah−1h!.

(v) In Regime II the symmetric link functionL(i, j) = |i−j| does not obey AssumptionA′. However, since

it obeys Assumption A, by Theorem 10,
√

n
p (Ap(T

(s))− Ip) has the same LSD as for the asymmetric case,

namelyLT .

5.6 Simulations

(i) The histogram from 50 replications for the ESD ofAp(T ) whenp = 300, p/n = 1/3 is given in Figure
1, illustrating Theorem 1 (i).

It is not too difficult to show that the support is unbounded. The more interesting evidence is that the
support of the LSD excludes a neighbourhood of zero. Recall that for theS matrix withy < 1, the infimum
of the support is(1 − √

y)2. It will be interesting to prove that the infimum of the support in this case is
also strictly positive and find its value. Such a result wouldbe of interest due to numerical technique of
“pre-multiplication” by patterned matrices which is used to solve large systems of sparse equations, see for
example Kaltofen (1994) [12].
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Figure 1:Histogram for empirical spectral distribution for 50 realizations of(1/n)TT ′ with U(−
√

3,
√

3) entries whereT is a
300 × 900 asymmetric Toeplitz matrix.

33



(ii) By Theorem 1 (ii), in Regime II, the LSD for the asymmetric Toeplitz matrix exists. By Theorem
10, the same LSD continues to hold for symmetric Toeplitz matrices. In Figure 2 we report the result of a
simulation of these matrices. The two histograms of ESD, based on 30 replications each, are similar and the
apparent difference could be only due to the finite sample effect,p = 200, p/n = 0.01.
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Figure 2:Histograms for empirical spectral distribution for 30 realizations of 1√
np

(TT ′ − nI) with N(0, 1) entries whereT is
a200 × 20000 Toeplitz matrix with asymmetric link function (left) and symmetric link function (right).

(iii) Figure 3 shows the histograms of the ESD from 50 replications forAp(X) with p = n = 500 where
X is the symmetric and the asymmetric Hankel matrix. This illustrates Theorem 2 (i).
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Figure 3: Histograms for empirical spectral distribution for 50 realizations of(1/n)HH ′ with N(0, 1) entries whereH is a
500 × 500 Hankel matrix with symmetric link function (color: light violet) and asymmetric link function (color: deep blue).

34



Acknowledgment

We thank the Referee for the detailed comments and suggestions. These have led to a significant improve-
ment in the exposition of the paper.

References

[1] Bai, Z. D. Methodologies in spectral analysis of large dimensional random matrices, a review.Statistica
Sinica, 1999, 9, 611–677 (with discussions).

[2] Bai, Z. D. and Silverstein, J. W.Spectral Analysis of Large Dimensional Random Matrices.Science
Press, Beijing, 2006.

[3] Bai, Z. D. and Yin, Y. Q. Convergence to the semicircle law. Ann. Probab., 1988, 16, no. 2, 863–875.

[4] Bhatia, R.Matrix Analysis. Springer, New York, 1997.

[5] Bose, A. and Mitra, J. Limiting spectral distribution ofa special circulant.Stat. Probab. Letters, 2002,
60, 1, 111–120.

[6] Bose, A. and Sen, A. Another look at the moment method for large dimensional random matrices.
Elec. J. Probab., 2008, 13, 588–628.

[7] Bryc, W., Dembo, A. and Jiang, T. Spectral measure of large random Hankel, Markov and Toeplitz
matrices.Ann. Probab., 2006, 34, no. 1, 1–38.

[8] Feller, W.An Introduction to Probability Theory and Its Applications. Vol. 2, Wiley, New York, 1966.

[9] Grenander, U. and Silverstein, J.W. Spectral analysis of networks with random topologies.SIAM J.
Appl. Math., 1977, 32, 499–519.

[10] Hammond, C. and Miller, S. J. Distribution of eigenvalues for the ensemble of real symmetric Toeplitz
matrices.J. Theoret. Probab., 2005, 18, no. 3, 537–566.

[11] Jonsson, D. Some limit theorems for the eigenvalues of asample covariance matrix.J. Multivariate
Anal., 1982, 12, no. 1, 1–38.

[12] Kaltofen, E. Asymptotically fast solution of Toeplitz-like singular linear systems.ISSAC, 1994, 297–
304, Available at http://www4.ncsu.edu/ kaltofen/bibliography/kaltofen.html
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