Limiting spectral distribution ofX X’ matrices

Arup Bose* Sreela Gangopadhyay Arnab Sen

July 23, 2009

Abstract

The methods to establish the limiting spectral distribui{ibSD) of large dimensional random ma-
trices includes the well known moment method which invokesttace formula. Its success has been
demonstrated in several types of matrices such as the Wigatix and the sample covariance matrix.
In a recent article Bryc, Dembo and Jiang (2006) [7] esthtilie LSD for random Toeplitz and Han-
kel matrices using the moment method. They perform the sacggounting of terms in the trace by
splitting the relevant sets into equivalence classes datrrg the limits of the counts to certain volume
calculations. Bose and Sen (2008) [6] have developed thikaddurther and have provided a general
framework which deals with symmetric matrices with entgeming from an independent sequence.

In this article we enlarge the scope of the above approacbrsider matrices of the form, =
%XX’ whereX is ap x n matrix with real entries. We establish some general resulthe existence
of the spectral distribution of such matrices, approplyatentered and scaled, when— oo andn =
n(p) — oo andp/n — y with 0 < y < oo. As examples we show the existence of the spectral
distribution whenX is taken to be the appropriate asymmetric Hankel, Toepitzulant and reverse
circulant matrices. In particular, when= 0, the limits for all these matrices coincide and is the same
as the limit for the symmetric Toeplitz derived in Bryc, Deonénd Jiang (2006) [7]. In other cases,
we obtain new limiting spectral distributions for which ntmsed form expressions are known. We
demonstrate the nature of these limits through some sironlegsults.
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1 Introduction

1.1 Random matrices and spectral distribution

Random matrices were introduced in mathematical staistyjcWishart (1928) [20]. In 1950 Wigner suc-
cessfully used random matrices to model the nuclear enexglsl of a disordered particle system. The
seminal work, Wigner (1958) [19] laid the foundation of tkisbject. This theory has grown into a sepa-
rate field now, with application in many branches of sciertb@s includes areas as diverse as multivariate
statistics, operator algebra, number theory, signal psing and wireless communication.

Spectral properties of random matrices is in general a mchaitractive area for mathematicians. In
particular, when the dimension of the random matrix is lathe problem of studying the behavior of the
eigenvalues in the bulk of the spectrum has arisen natumalipany areas of science and has received
considerable attention. Suppodeg is ap x p random matrix. Let\;,...,\, € R (or C) denote its
eigenvalues. When the eigenvalues are real, our conventibipe to always write them in ascending order.
The empirical spectral measuyrg of A, is the random measure @(or C ) given by

1 p
Mp =~ Z(SAH (1)
p =1

whered,. is the Dirac delta measure at The random probability distribution function d (or C) corre-
sponding tou,, is known as thé&mpirical Spectral Distributio(ESD) of A,,. We will denote it byF4».

If {F4»} converges weakly (gstends to infinity), either almost surely or in probability, some (non-
random) probability distribution, then that distributiecalled theLimiting Spectral Distribution(LSD)
of {A,}. Proving existence of LSD and deriving its properties fongyal patterned matrices has drawn
significant attention in the literature. We refer to Bai (IPfl] Bose and Sen (2008) [6] for information on
several interesting situations where the LSD exists andearxplicitly specified.

Possibly the two most significant matrices whose LSD hava bgtensively studied, are the Wigner and
the sample covariance matrices. For simplicity, let usmassior the time being that all random sequences
under consideration are independent and uniformly bounded

1. Wigner matrix. In its simplest form, the Wigner matriW,SS) (Wigner, 1955, 1958) [18, 19], of order
n IS ann x n symmetricmatrix whose entries on and above the diagonal are i.i.dlomnvariables with
zero mean and variance one. Denoting those i.i.d. randombles by{xz;; : 1 < i < j}, we can visualize
the Wigner matrix as

11 L1213 .- Tin-1) Lin
Wés) _ T12  T22 X23 Lo(n—1) TL2n ‘ @)
Tin X2n X3n ... xn(n_l) Tnn
It is well known that almost surely,
LSD of n~ /2w (*) is thesemicircle lawlV, (3)

with the density function
EVA—s2 i |s| <2,
pw(s) = (4)
0 otherwise.



2. Sample covariance matrix § matrix) . Suppose{xj; : j,k = 1,2,...} is a double array of i.i.d.
real random variables with mean zero and variance 1. Thexmatr

Ap(W) = n™ W, W, where W, = ((2ij))1<i<p1<j<n ()

is called a sample covariance matrix (in shortSamatrix). Let/, denote the identity matrix of order The
following results are well known. See Bai (1999) [1] or Bosel &en (2008) [6] for moment method and
Stieltjes transform method proofs. To have the historidae&iof the successive development of these results
see Bai and Yin (1988) [3] for (a) and Marcenko, and Past@67} [13], Grenander and Silverstein (1977)
[9], Wachter (1978) [17], Jonsson (1982) [11], Yin and Krigkah (1985) [22] and Yin (1986) [21] for (b).

(@) If p — oo andp/n — 0 then almost surely,
LSD of \/ﬁ(Ap(W) — 1I,,) is the semicircle law given in (4) above (6)
p

(b) If p — oo andp/n — y € (0, 00) then almost surely,

LSD of A,(WW) is the Marcenko-Pastur law/ P, given in (8) below. @)

The Mar Cenko-Pastur law M P, has a positive masis— é at the origin ify > 1. Elsewhere it has a
density:

MPy(x) = 8)

27r1xy (b—z)(x—a) ifa<z<h,
0 otherwise

wherea = a(y) = (1 — \/y)* andb = b(y) = (1 + /y)*.

Suppose = n. ThenWW,, above is a square matrix with i.i.d. elements, and the Wigmegrix W,SS) is
obtained fromlV,, by retaining the elements above and on the diagon&lpaind letting symmetry dictate

the choice of the rest of the elementsit*). We loosely say thdi¥,, is theasymmetriazersion of W,*). It
is interesting to note the following:

(i) The LSD ofn~/2W,\*) in (3) and that ot\/ﬁ(%WpWI’, — I,,) in (6) are identical.

P
(i) If W and M are random variables obeying respectively, the semidiagleand the Marctenko-Pastur
law with y = 1, thenM 2 W2 in law. That is, the LSD of:~'/2W*) and that of: W, W, bears this
squaring relationship whesyn — 1.
1.2 The problem and its motivation

In view of the above discussion, it thus is natural to study D of matrices of the formd,(X) =
(1/n)X, X, where X, is ap x n suitably patterned (asymmetric) random matrix. Asymmérysed
loosely. It just means thaX, is not necessarily symmetric. In particular one may ask tfieviing ques-
tions.

(i) Supposep/n — y, 0 < y < co. When does the LSD of,(X) = %XPXIQ exist?

(i) Supposep/n — 0. When does the LSD OQ‘/%(AP(X) — I,,) exist? Note that unlike th& matrix,
the mean ofd,,(X) is not in general equal th, and hence other centering/normalisations may also need to
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be allowed.

(iif) SupposeX), is ap x n (asymmetric) patterned matrix an,(X) = %XPX;, for which the limit in

(ii) holds. Call it A. Now consider the square symmetric matfi” obtained fromx, by lettingp = n
and symmetrising it by retaining the elementsXgf above and on the diagonal and allowing symmetry to

dictate the rest of the elements. Suppose as oo, the LSD ofn=1/2x(") exists. Call itB. In general, is
there any relation betweds and A?

A further motivation to study the LSD O%XPXI’, comes from wireless communications theory. Many
results on the information-theoretic limits of various el&#ss communication channels make substantial use
of asymptotic random matrix theory, as the size of the maftixeases. An extended survey of results
and works in this area may be found in Tulino and Verdu (2004).[ Also see Silverstein and Tulino
(2006) [15] for a review of some of the existing mathematreslults that are relevant to the analysis of the
properties of random matrices arising in wireless comnmatiwos. The study of the asymptotic distribution
of thesingular valueds seen as an important aspect in the analysis and desigrrelégs communication
channels.

A typical wireless communication channel may be describethé linear vector memoryless channel:
y=X,0+e¢

whered is then-dimensional vector of the signal input,is thep-dimensional vector of the signal output,
and thep dimensional vectoe is the additive noiseX,, in turn, is thep x n random matrix, generally with
complex entries.

Silverstein and Tulino (2006) [15] emphasize the asymeptistribution of the squared singular-values
of X, under various assumptions on the joint distribution of #wedom matrix coefficients where and
p tend to infinity while the aspect ratip/n — y, 0 < y < oo. In their model, generally speaking, the
channel matrixX, can be viewed ax(,, = f(A, As, ..., Ax) where{A;} are some independent random
(rectangular) matrices with complex entries, each hawsgwn meaning in terms of the channel. In most
of the cases they studied, somMehave all i.i.d. entries, while the LSD of the other matricsA?, j # i
are assumed to exist. Then the LSDXfX is computed in terms of the LSD of; A%, j # i .

Specifically, certain CDMA channels can be modeled (e.gTséro and Verdu (2004) [16, Chapter 3],
Silverstein and Tulino (2006) [15]) a§, = C'SA whereC' is ap x p random symmetric Toeplitz matrix,
S is a matrix with i.i.d. complex entries independent’gfand A is ann x n deterministic diagonal matrix.
One of the main theorems in Silverstein and Tulino (2006) Ediablishes the LSD ok}, = C'SA for
randomp x p matrix C, not necessarily Toeplitz, under the added assumptiorthiedtSD of the matrices
CC’ exists. WherC' is a random symmetric Topelitz matrix, the existence of tB®lof CC’ is immediate
from the recent work of Bryc, Dembo and Jiang (2006) [7] andmrhond and Miller (2005) [10]. This
also motivates us to study the LSDKLX]’D matrices in some generality whekg, is not necessarily square
and symmetric.

1.3 The moment method

We shall use thenethod of moment® study this convergence. To briefly describe this methodpsse
{Y,} is a sequence of random variables with distribution fumstigF;, } such thatIE(Y;,h) — [y, for every
positive integerh, and{ 3 } satisfiesCarleman’s conditior(see Feller, 1966, page 224) [8]:

Zﬁ;hl/Zh — . )
h=1

4



Then there exists a distribution functidt such that for alh,
B = 0u(F) = [ a"dF(z) (10)

and{Y,} (or equivalently{F},}) converges td@" in distribution. We will often in short write;, when the
underlying distributionF’ is clear from the context.

Now supposg A4, } is a sequence gf x p symmetric matrices (with possibly random entries), andogt
a slight abuse of notatiorti, (A,) denote the:-th moment of the ESD ofl,,. Suppose there is a sequence
of nonrandom{ 3, } 3, satisfying Carleman’s condition such that,

(M1) First moment condition: For everyh > 1, E[3,(A,)] — 3, and
(M2) Second moment condition:For everyh > 1, Var[3,(A4,)] — 0.

Then the LSD is identified by3,}7° ; and the convergence to LSD holds in probability. This conver
gence may be strengthened to almost sure convergence hgtbgaing (M2), for example, by replacing
variance by the fourth moment and showing that

(M4) Fourth moment condition: For everyh > 1, E[3,(A,) — E(8r(4,))]* = O(p~2).

For any symmetrigp x p matrix A with eigenvalues\y, ... \,, thetrace formula

p

Bu(A) =p~' Y Ap =p ' Tr(A")

=1
is invoked to compute moments. Moment method proofs are krfowthe results on Wigner matrix and
the sample covariance matrix given earlier. See for exanBase and Sen (2008) [6].

1.4 Brief overview of our results

Let Z be the set of all integers. L€tr,}ocz be aninput sequencevhere Z = Z or Z? and {z,} are
independent witlEz, = 0 andEx2 = 1. LetL, : {1,2,...,p} x {1,2,...,n = n(p)} — Z be a
sequence of functions which we catik functions For simplicity of notation, we will writeL, for L,,. We
shall later impose suitable restriction on the link funeid,, and sufficient probabilistic assumptions on
the variables. Consider the matrices

X, = (('mLp(i,j)))lﬁiSp, 1<j<n and Ap = Ap(X) = (1/n)XpXI/,

The functionL, defines an appropriate pattern and we may call these mapatesrnedmatrices. The
assumptions on the link function restrict the number andmaam which any element of the input sequence
may occur in the matrix.

We shall consider two different regimes:

Regime L. p — oo, p/n — y € (0,00). In this case, we consider the spectral distribution of
A, =A,(X) = n—lXpX;,.

Regime Il. p — oo, p/n — 0. In this case we consider the spectral distributiofrgf) ~/2( X, X, —
nl,) = \/%(Ap — I,,) wherel, is the identity matrix of ordep.
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We will use the following assumptions on the input sequeltéso regimes.

Assumption R1 In Regime 1 {z,} are independent with mean zero and variance one, and arereith
uniformly bounded or identically distributed.

Assumption R2 In Regime Il,{z,} are independent with mean zero and variance 1. Further, 1 is
such thaty = O(n'/*) andsup,, E(|z,|*1 /)9 < oo for somes > 0.

The moment method requires all moments to be finite. Howav&egime |, our basic assumption will
be that the input sequence has finite second moment. To déathis, we first prove a truncation result
which shows that in Regime |, under appropriate assumptiath® link function, without loss of generality,
we may assume the input sequence to be uniformly bounded.siittaion in Regime Il is significantly
more involved and there we assume existence of higher mament

We then establish a negligibility result which implies tl@at nonzero contribution to the limiting mo-
ments, only summands in the trace formula which are “paiched” matter. See next section for details
on “matching”. The existence of the limit of the sum of pairtoteed terms and then the computation of the
limit establishes the LSD.

Quite interestingly, under reasonable assumptions onlkbwel pattern,f the limit of empirical mo-
ments exist, they automatically satisfy Carleman’s caoiand thus ensures the existence of the LSD.
However, we are unaware of any general existing method obsing suitable restrictions on the link func-
tion to guarantee the existence of limits of moments.

As examples of our method, we |&t, to be the nonsymmetric Toeplitz, Hankel, reverse circuéant
circulant matrices. We show that the LSD exists in both Regifmand Il, thereby answering questions (i)
and (ii) in the previous section affirmatively for these rias. The LSD in Regime | are all new.

However, in Regime I, the LSD of all four matrices above atentical to the LSD obtained by Bryc,
Dembo and Jiang (2006) [7] for tleymmetricToeplitz matrixT}LS). This implies that the answer to question
(iii) is not straightforward and needs further investigati

Closed form expressions for the LSD or for its moments do eeirsto be easily obtainable. We provide
a few simulations to demonstrate the nature of the LSD argldniinteresting problem to derive detailed
properties of the LSD in any of these cases.

1.5 Examples

In this section we will consider some specific nonsymmetratrioes of interest. In particular, 1&f, be the
asymmetric versions of the four matrices Toeplitz, Han&etulant and reverse circulant. Then it turns out

that In Regime I, the or/— — exists and Is identical to the ar /=T," obtaine
hat in Regime I, the LSD fof /2 (4,(X,) — I,) exists and is identical to the LSD far'/>T\* obtained

by Bryc, Dembo and Jiang (2006) [7] for the symmetrix n Toeplitz matrixTés). In Regime I, the LSD
for A,(X,) exist but they are all different. The proofs of the resuligegibelow are presented in Section 5.

1.5.1 The asymmetric Toeplitz matrix

Then x n symmetric Toeplitz matrix is defined ﬁés) = ((w);—;|))- Itis known that if the input sequence
{z;} has mean zero and variance one and is either independenhéoanly bounded or, is i.i.d., then

n~12T(%) converges weakly almost surely #; (say)
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See for example Bose and Sen (2008) [6], Bryc, Dembo and J&0@6) [7] and Hammond and Miller
(2005) [10]. It may be noted that the momentsZaf may be represented as volumes of certain subsets of
the unit hypercubes but are not known in any explicit form.

Let
Ty =T = ((i-j))pxn, Ap(T) = n‘lTpTé.

Note that7), is the nonsymmetric Toeplitz matrix.

Theorem 1 (i) [Regime I] Assume R1 holds.  — y € (0,00) then empirical spectral distribution
FA»(T) converges in distribution almost surely to a nonrandomritistion which does not depend on the
distribution of{z; }.

—Ip)

(ii) [Regime II] Assume R2 holds. Théﬁ\/g(Ap(T) converges in distribution td@, almost surely.

1.5.2 The asymmetric Hankel matrix

Suppose{z;,i = 1,+1,4+2,...} is an independent input sequence. IEE;(f) = ((wi45)) be then x n
symmetric Hankel matrix. It is known that {fz; } has mean zero and variance one and is either uniformly
bounded or i.i.d., then

—1/217(s)
F*"Ha converges weakly almost surely

See for example Bryc, Dembo and Jiang (2006) [7] and Bose andZ®08) [6].
Now let H = H,, be the asymmetric Hankel matrix where thigj)th entry isz;,; if ¢ > j and

T_(iqj if i < j. Let HI(,S) = ((zi+;))p,n be the rectangular Hankel matrix with symmetric link funati
Let

/

Ap(H) =n"'H,H) and A,(H®) =n""H H®
We then have the following Theorem.

Theorem 2 (i) [Regime I] Assume R1 holds. ¥ — y € (0, o) then F4»(H) converges almost surely to a
nonrandom distribution which does not depend on the distidn of {x; }.

(ii) [Regime I1] Assume R2 holds. Théﬁ\/g(Ap(H)_l")

continues to hold ifA, (H) is replacedA, (H®)).

converges almost surely or. The same limit

1.5.3 The asymmetric reverse circulant matrix

ThesymmetriReverse Circulank!;’ has the link functiorL (i, j) = (i+j) modn. The LSD ofn=1/2R{?
has been discussed in Bose and Mitra (2003) [5] and Bose an(?8@8) [6]. In particular it is known that
if {x;} are independent with mean zero and variahaad are either (i) uniformly bounded or (i) identically

distributed, then the LSI® of n~/2R'®) exists almost surely and has the density,
fr(z) = |z|exp(—z?), —o0o <z < o0

with moments
Bon+1(R) =0 and [y (R) = h! forall h > 0.
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Let Rés) be thep x n matrix with link function L(¢,j) = (i + j) modn and R, = R,x, be the
asymmetriosersion ofRés) with the link function

L(i,j) = (i+j)modnfor i <j

— _[(i'+ ) modn] for i > j. (11)

So, in effect, the rows ok, are the firsp rows of an (asymmetric) Reverse Circulant matrix. Let
Ap(R) =n'R,R, and A,(R®) = n~'RERE)"
We then have the following theorem.

Theorem 3 (i) [Regime I] Assume R1 holds. ¥ — y € (0, 00) then F4»(F) converges almost surely to a
nonrandom distribution which does not depend on the distidn of {x; }.

(i) [Regime I1] Assume R2 holds. Thaa # 701

continues to hold ifd, (R) is replacedA, (R()).

converges almost surely . The same limit

1.6 The asymmetric circulant matrix

The square circulant matrix is well known in the literatults. eigenvalues can be explicitly computed and
are closely related to the periodogram. Its LSD is the batarnormal distribution. See for example Bose
and Mitra [5]. Its symmetric version is treated in Bose and @908) [6]. Let

Cp = Cpxn = ((x1(,))) Where L(i,§) = (n — i+ j) modn, and A,(C) =p~'C,C).

Theorem 4 (i) [Regime [] Assume R1 holds. ¥ — y € (0, c0) then F4»(¢) converges almost surely to a
nonrandom distribution which does not depend on the distidn of {x; }.

)

(ii) [Regime II] Assume R2 holds. Them\/gmp(c)_l” converges almost surely 10p.

2 Basic notation, definitions and assumptions

Examples of link functions that correspond to matrices tdriest are as follows:
0. Covariance matrixi, (i, j) = (7, 7).
1. Asymmetric Toeplitz matrixZy (i, j) =i — j.

2. Asymmetric Hankel matrixiy (i, j) = sgni — j)(¢ + j) where

1 if 1>0,
sgnl) :{ 1 if 1 <0 (12)

3. Asymmetric Reverse Circulank, (i, j) = sgni — j)(¢ + j) mod n.
4. Asymmetric CirculantZ,(i,j) = (n+j — i) mod n.

For any setw, #G and |G| will stand for the number of elements 6f. We shall use the following
general assumptions on the link function.

Assumptions on link function L:



A. There exists positive integdr such that for anyx € Z andp > 1,
() #{i: Lp(i,j) =a} < Pforall j € {1,2,...,n}and
(i) #{j: Lp(i,j) = af < Pforalli e {1,2,...,p}.

A'. Foranya € Zandp > 1, #{i: L,(i,j) = a} < 1forallj € {1,2,... ,n}.

B. ky,a, = O(np) where

kp=#{a: Lp(i,j) =a,1 <i<p1<j<n}, op= mag[L;l(a)\.
aE

Assumption A stipulates that with increasing dimensiohs, tumber of times any fixed input variable
appears in any given row or column, remains bounded. Assamp{ stipulates that no input appears
more than once in any column. Assumption B makes sure thaartplar input appears too many times
in the matrix. Clearly Aimplies A(i) but B is not related to either A or’A Consider the link function
L,(i,7) = (1,1)if i = jandL,(i,j) = (i,4) if ¢ # j. This link function satisfies A(ii) and Abut not
B. On the other hand if,(i,j) = 1 for all (¢, j) then it satisfies B but not A. It is easy to verify that the
link functions listed above satisfy these assumptions.ay miso be noted that the symmetric Toeplitz link
function doesot satisfy Assumption A

Towards applying the moment method, we need a few notionst afievhich are given in details in Bose
and Sen (2008) [6] in the context of symmetric matrices. €hemcepts and definitions will remain valid
in Regime Il also, with appropriate changes.

The trace formula. Let A, = n~' X, X/. Then theh-th moment of ESD of4, is given by

P AL =p It Y ) Ty Gisa) T T (i) T (insian)- (13)
1<i1,io,....in<n
Circuits. Any functionr : {0,1,2,--- ,2h} — Z, is said to be @ircuit if
(i) 7(0) =7 (2h),
(i) 1<7(2) <pV0O<i<hand
(iy 1<7(2i—1)<nV1<i<h.

Thelengthi(7) of 7 is taken to b&2h). A circuit depends o andp but we will suppress this depen-
dence.

Matched Circuits. Let
£(2i — 1) = L(7(2i — 2),m(2i — 1)), 1 <i<h and

£x(2i) = L(m(21),7(2i — 1)), 1 <i < h.
These will be calledL-values

A circuit 7 is said to have ardge of ordee (1 < e < 2h) if it has anL-value repeated exactlytimes.
Any 7 with all e > 2 will be called L-matched (in shortmatched. For any suchr, given any:, there is at
least onej # i such that (i) = &£, (J).

Define for any circuitr,

h
Xy = ngﬂ(m—l)xgﬂ(m)- (14)
i—1



Due to the mean zero and independence assumptiomasé at least one edge of order one th¢K ;) = 0.

Equivalence relation on circuits Two circuits; andwy of same length are said to be equivalent if
their L values agree at exactly the same péirg). That is, iff { &, (1) = &, (j) © &r, (i) = &ny(4) }- This
defines an equivalence relation between the circuits.

Words. Equivalence classes arising from the above equivaleriaéare may be identified with par-
titions of {1,2,--- ,2h}— to any partition we associateveord w of lengthi(w) = 2h of letters where
the first occurrence of each letter is in alphabetical ordeéor example, ifh = 3, then the partition
{{1,3,6},{2,4},{5}} is represented by the worthabca. Let |w| denote the number of different letters
that appear inv.

The notion of ordee edges, matching, nonmatching fercarries over to words in a natural manner. For
instance, the wordbaba is matched. The wordbcadbaa is nonmatched, has edges of orde2 and4 and
the corresponding partition i{1,4,7,8},{2,6},{3},{5}}. As pointed out, it will be enough to consider
only matched words sindg(X,) = 0 for nonmatched words. The following fact is obvious.

Word Count.

(2h)!

#{w : wis of length 2k and has only orde2 edges with|w| = h} = Shhl

(15)

The classlI(w). Letw[i] denote the-th entry ofw. The equivalence class correspondingutavill be
denoted by

M(w) = {m: wli] = w[j] & &) = &(5)}-

The number of partition blocks correspondingutawill be denoted byw|. If 7 € II(w), then clearly the
number of distinct_-values equal&w|. Notationally,

#{&x (i) 1 1 < i < 2h} = |w.

Note that now, with the above definition, we may rewrite tlaedrformula as

p! TrAZ =ptnh Z Xy=p n " Z Z X,

m: 7 Circuit w rell(w)

where the first sum is taken over all words with leng®h). After taking expectation, only the matched

words survive and
I['Z[p_1 Tr AZ] —plnh Z Z EX;.

w matched rell(w)

To deal with (M4), we need multiple circuits. The followingtions will be useful for dealing with
multiple circuits:

Jointly Matched and Cross-matched Circuits £ circuitsy, ms, - - - , 7, are said to bgointly matched
if each L-value occurs at least twice across all circuits. They aickteebecross-matchedf each circuit has
at least ond.-value which occurs in at least one of the other circuits.

The classIl*(w). Define for any (matched) word,
I (w) = {7 : wli] = w[j] = & (i) = &)} (16)
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Note thatlT*(w) 2 II(w). However, as we will sed*(w) is equivalent tdI(w) for asymptotic considera-
tions, but is easier to work with.

Vertex and generating vertex Eachr (i) of a circuitm will be called avertex Further,r(2:),0 <i < h
will be called even verticesr p-verticesandr(2i—1),1 < ¢ < h will be called odd verticer n-vertices

A vertex is said to begeneratingf eitheri = 0 or w[i] is the position of thdirst occurrence of a letter.
For example, ifw = abbcab thenw(0), (1), 7(2), 7 (4) are generating vertices.

We will call an odd generating vertex(2: — 1) Type | if 7(2¢) is also an even generating vertex.
Otherwise we will callr(2i — 1) a Type |l odd generating vertex.

Obviously, number of generating verticesrins |w| + 1. By Assumption A ol function given earlier,
a circuit of a fixed length is completely determineg, to a finitely many choicdsy its generating vertices.
Hence, in Regime | under the assumption A, we obtain the sifopl crucial estimate

I (w)] = O(nl*I*1).

Let [a] denote the integer part af For Regime II, we will further assume’ Aln that case, it shall be shown
that w|+17 [ lw]
[T (w)| = O(p! 1 Inl5),

3 Regime

In Regime I,p — oo such thatp/n — y € (0,00) and we consider the spectral distribution 4f =
Ay(X) =n"1X,X]. There are two main theorems in this section. Theorem 5 igeprander Assumption
B. We show that the input sequence may be taken to be boundbeduvioss of generality. This allows
us to deal with bounded sequences in all examples later. réhidt is proved sketchily in Bose and Sen
(2008) [6], with special reference to the sample covarianegrix. We provide a detailed proof for clarity
and completeness. Theorem 6 is proved under Assumptions B aWe show that the ESD ¢4, (X)} is
almost surely tight and any subsequential limit is sub Gaas$nvoking the trace formula, we show that the
LSD exists iff the moments converge. Further, in the limitlygpair matched terms potentially contribute.
To prove Theorem 5, we will need the following notion and iesu

Thebounded Lipschitz metri€zy, is defined on the space of probability measures as:

dp1 (i, v) = supf / . / Jdv || lloe + 111z < 1} (17)

where

[1£1lo0 = sup [f (@), [If]lz = il;l;!f(w) —fWl/lz =yl

Recall that convergence itp;, implies weak convergence of measures.

The following inequalities provide estimate of the metristanced sy, in terms of trace. Proofs may be
found in Bai and Silverstein (2006) [2] or Bai (1999) [1] argkg Lidskii's theorem (see Bhatia, 1997, page
69) [4].

Lemma 1 (i) Supposed, B aren x n symmetric real matrices. Then

n -
=1

dp (FA, FP) < (% 3 A Az-(B)\>2 < LS -y < Ina-B2. (9)
=1
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(ii) For any square matrixS, let F'° denote its empirical spectral distribution. SupposeandY are
p x n real matrices. Letd = XX’ andB = YY"’ Then

2
d%, (FA, FP) < (ZM )|> é]%Tr(A—I—B)Tr[(X—Y)(X—Y)’]. (19)

Theorem 5 Letp — oo, 2 — y € (0,00) and Assumption B holds so thatk, = O(np). Suppose for
every bounded mean zero and variance one i.i.d. input seeuEﬁlePXz@ converges weakly to some fixed
nonrandom distributior(z almost surely. Then the same limit continues to hold if tpetisequence is i.i.d.
with mean zero and variance one.

Proof of Theorem 5 Without loss of generality we shall assume tiat= Z and also writeX for X,.
Fort > 0, denote

u(t) = E[zol(|zo| > t)] = —E[zol(|zo| < 1)]

and let
o?(t) = Var(zol(|zo| < t)) = E[z51(|zo| < t)] — p(t)*.

SinceE(xg) = 0 andE(z3) = 1, we haveu(t) — 0 ando(t) — 1 ast — oo ando?(t) < 1. Define
bounded random variables

(x| <t i — T _
pr = SlEA SO+ RO 2= e (a] > ) — p(t) = 5 — o2t (20)

b a(t) o(t)

It is easy to see thdk(z2) = 1 — o2(t) — u(t)> — 0 ast tends to infinity. Further{z}} are i.i.d.
bounded, mean zero and variance one random variables. teplase the entries;, (; ;) of the matrix X,
by the truncated version; (0] (respectlvelyx L,(i,j) ) and denote this matrix by (respectivelyX,). By
triangle inequality and (19)

dZBL (anlx,,x; Fn*YY')
< deBL (anlxpx;’ anla(t)2yy’) + 2d23L (Fn*1YY” anla(t)WY’)

< p2in2 Tr(X, X, + o(t)’YY') Tr(X, — o()Y )(X, — o(t)Y)

+ p?iyﬂ Tr(YY' +o(t)?’YY ) Tr(o(t)Y —Y)(c(t)Y —Y).

To tackle the first term on the right side above,

Tr(X, X 4+ o(t)?’YY")
= > ZZ 1$% (i.k) +o(t)? Y0 Yk x*LZp(i,k)

)

anky < i1 ’) —I—ZZ (T L, (k) pr(z',k))2

i=1 k=1
kp 2 kp kp kp -2
P i l{|z;| >t i—1 |Ti i=1~Li
ankp<21z;wz> +ankp< =1 zki’w’ }> +’N(t)‘apkp<227€;’w‘> _i_apkp(Zz];;x >

Therefore usingy,k, = O(np) and the SLLN, we can see thatp) ' (Tr(X,X] + o(t)*YY")) is
bounded. Now,

IN

IN
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o
1 1 _ 1 1 3
T, — 0O )X, ~ oY | = o TG < ok (1 > )

which is bounded by’E(z?) almost surely, for some constafit Here we use the conditian,k, = O(np)
and SLLN for{z?}. SinceE(z?) — 0 ast — oo we can make the right side tend to 0 almost surely, by first
letting p tend to infinity, and then lettingtend to infinity. This takes care of the first term.

To tackle the second term,

T, = ni [Tr (oYY + YY) Tr ((o(t)Y = Y)(o(t)Y —Y))]
= 2 + D) - DA(Tr(¥Y"))?
< nzip2( O+ D) =*Q > i iw)’?
5 £ — 1) [ Zk” x2 ka J{|xi] >t}
< nQ—pZ(U(t)2 + 1)(0(0_7 [apkp (%) +ophp ( = Zk:p Z )

S Jaf st a2\’
e e R e I
P P

Again using the conditiony,k, = O(np) ando(t) — 1 ast — oo we getl, — 0 almost surely. This
completes the proof of the theorem. O

To investigate the existence of the LSDAf = A,(X) = (1/n)X, X, in view of Theorem 5, we shall
assume that the input sequence is i.i.d. bounded, with meranand variance 1. Recall the two formulae

given earlier:
P Ay =t Y Xe=pT )} X
m: 7 Circuit w rell(w)
where the first sum is taken over all words with leng2h) and

E[p_lTrAh =p tnh Z Z EX;.

w matched 7ell(w)

Theorem 6 Let A, = (1/n)X, X, where the entries ok, are bounded, independent with mean zero and
variance 1 andL,, satisfies Properties A and B. Lgtn — y, 0 < y < co. Then

(i) If wis matched word of lengtfh) with an edge of order 3, thenp~—'n=" Zweﬂ(w) EX, — 0.

(i) Foreachh > 1,
Elp ' T Ay — > p M (w)]] — 0.

w matched
w|=h

(i) Foreachh >1, p~' Tr Al — E [p~! Tr Ah] %% 0.

(iv) If we denotes;, = limsup,, Y . matched? In =0 |IT* (w)], then{ s, },>1 satisfies Carleman’s condition.

lwl=h

13



The sequence of ESI{)FAP(X)} is almost surely tight. Any subsequential limit is sub GaussThe LSD
exists iff lim;, ), matched? ‘" |IT*(w)| exists for eacth. The same LSD continues to hold if the input
|w|=h

sequence is i.i.d. (not necessarily bounded) with meanaratosariance one.

Remark 1 Without assuming anything further on the link functibp, the above limits need not exist.
However in Section 1.5, we have seen several examples viledimits do indeed exist.

Proof of Theorem 6. For the special case of covariance matrix, a proof can bedfou Bose and Sen
(2008) [6]. The same arguments may be adapted to generdulitttions. For the sake of completeness,
here are the essential steps.

Recall that circuits which have at least one edge of ordemiribmite zero. Thus, consider all circuits
which have at least one edge of order at least 3 and all otly@seof order at least 2. LéY), 3+ be the
number of such circuits of lengtt2h).

Suppose first thgt = n. Theny = 1. In this caser has uniform rangel < (i) < n,1 < i < 2h.
Then, from the arguments of Bryc, Dembo and Jiang (2006)1[79}+h)Nh,3+ — 0.

Now for generaly > 0, the range ofr(7) is not same for every. For odd vertices, it is from to n and
for even vertices, it id to p. However, this case is easily reduced to the previous gase) as follows:
let TI(w) be the possibly larger class of same circuits but with ranhge (i) < max(p,n), 1 < i < 2h.
Then, there is a constatt, such that

ptnT Y H(w)| < Clmax(p,n)]” ") Y [T(w)| -0
w has one edge w has one edge
of order at least 3 of order at least 3

from the previous case. This proves (i). Statement (ii) @th consequence.
For (iii), it is enough to show that

E[p~' Tr AZ —Ep!'Tr AZ]4 =0(p7?).

The proof is essentially same as the proof of Lemma 2 (b) inreBowd Sen (2008) [6]. For the sake of
completeness, we give the full proof here. We write the foambment as

4

EIE:[HA]D ~E(TrAM)]" = ST > EB[[[(Xn, - EX,)]
T2, 73,4 =1
If (71,72, 73, 74) are not jointly matched, then one of the circuits, sayhas anl-value which does not
occur anywhere else. Also note tHaK,, = 0. Hence, using independendg|[ [\, (X, — EX,,)] =
E[Xm H?:Li;éj (X7, —EX7,)] = 0.

Further, if (71, 72, 73, 74) is jointly matched but is not cross-matched then one of theuits, sayr;
is only self-matched, that is, none of ifsvalues is shared with those of the other circuits. Thenrabgi
independence,

4 4
E[H(Xm - EXq)] = E[(Xm - EXW]')]E[ H (X, — EX7)] =0.
=1 i=1,i#j

So it is clear that for non-zero contribution, the quadrugfleircuits must be jointly matched and cross
matched. Observe that the total number of edges in eachitafdhe quadruple i$2h). So total number of

14



edges over 4 circuits i8f). Since they are at least pair matched, there can be at(#tostistinct edges i.e.
distinct L-values. In Bryc, Dembo and Jiang (2006) [7] the authorsregtd the number of quadruples of
circuits which are jointly matched and cross matched. Ths®dwa method of counting which they applied
only to Toeplitz and Hankel link function. But that method nk® as well for any general link function
satisfying Assumption A. Using this method, we can say tipartafrom 71 (0), m2(0), m3(0) andm4(0)
which are always generating vertices, there can be at (ast 2) many generating vertices to determine
(4h) distinct L-values. So total number of generating vertices obtaingdjiBryc, Dembo and Jiang (2006)
[7] method is at most4h + 2). SinceZ — y, 0 <y < oo, itis easy to see that there is a constAnivhich
depends omy andh, such that

4h+2
p+

1 4 -
FE[Tr Al —E(Tr Al)]" < K 1 = Oy 2). (21)

This guarantees that if there is convergence, it is almast S0 (iii) is proved.

By Assumption A, for any matched word of length (24) with |w| = h, we have|lT*(w)| < n+1oh
which combined with the fact (15) yields the validity of Garlan’s condition, proving (iv).

The other claims of the theorem are easy consequences béalldcussion so far. O

4 Regime ll

In this casep — oo andp/n — 0. From the experience of the existing results for the samplariance ma-
trix (see for example Bai and Silverstein (2006) [2]), thiédi@ing scaled and centered version is required.
Define .
n
Np - Np(X) = (;)1/2(EXPX;; - Ip) = ;(AP(X) - Ip)- (22)

Straightforward extension of Theorem 5 is not possible imghuation. In Theorem 7 we show how the
matrix N, defined above may be approximated by the following ma#jx= B, (X) with bounded entries
under additional moment assumption.

1 K. . N
(Bp)ij = —= > _ &ran&rga, if i #jand(By)i =0, (23)
=1

Vi £

wherez, = 2,1(|zq| < eyn'/*), 2o = i — Ei, ande, will be chosen later.

Theorem 8 establishes the relationship between the egestgfithe LSD and the limits of the empirical
moments.

In Theorem 9 we prove an interesting result in Regime 1. ®gpi(") and L) are two link functions
satisfying Assumptions A(ii), Aand B and they agree onthe $ét, j) : 1 <i <p, 1 <j <nandi < j}.
Then we show that the corresponding matridg$.X ) have identical LSD.

In Theorem 10 we work with Assumption A and show the closemé4sSD in probability when two
link functions agree on the above set.

Theorem 7 Letp,n — oo so thatp/n — 0 and Assumption R2 holds.Suppdsgesatisfies Assumptions A
and B. Then there exists a nonrandom sequgmrg with the property that, | 0 but epp1/4 Toocasp | o
such thatD (F'B», FN») — 0 a.s. whereD is the metric for convergence in distribution on the spacallof
probability distribution functions.
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Proof of Theorem 7. Let

. 3 . 1 -
Xp = ((Zrg,j))1<i<pi<j<n and Ny = —(X —nly).

ﬁ

~ 5 p n
sup |[F N (z) — FNe(2)] < p~lrank X, — X)) <p~! Z Z”L(z}j) where 1, = I(|z4| > ,n'/%).
r i=1 j=1
The first inequality above follows from Bai (1999) [1, Lemm&]2

Write g, = sup, P(|z4| > ¢,n'/*). We claim that there exists a sequenge 0 going to zero arbitrarily
slowly such that
gp < Epn_(1+1/)\)+6/8. (24)

To establish the claim, for simplicity, assume= n(p) is an increasing function gf. Fix anye > 0.
We have

n(1+1/)\)+5/8 sup]P’(\xa] > en1/4) < 6_4(1+1/)\)_5/2 SupE’wa’4(1+1/)\)+5/2]1(‘xa’ > en1/4) =0 (25)

since the random variabldéz,, |11/ +9/21 are uniformly integrable.
Givenm > 1, by (25) find an integep,,, such that, > n,,, := n(p,,) implies

nIHYNHB up P(lzg| > m™ a4 <m™L

Definee, = 1/m if p, < p < pmi1 ande, = n(p1)H V19 for p < p,. Note that by choosing the
integers in the sequenge < p> < --- as large as we want, we can makego to zero as slowly as we like.
Clearly, ¢, satisfies the inequality (24).

For anys > 0, and withY; independent Bernoulli wit# (Y;) < ¢,

B(sup |[FY (a) ~ FY ()| > ) < B(p lzzm 5) > B)

i=1 j=1

kp
Plopp™' Y Vi > )
=1
kp
< (Bp)'ap Y _EY; by Markov inequality
=1
< (Bp)”~ 1ap pdp
< Cngy = o(n~ (1/>\+5/8)) _ O(p—(1+)\5/8))

where the constart' is such thaty,k, < C'Bnp. Hence by Borel-Cantelli lemma,
sup | (z) — FNe (x)] — 0a.s.
x

Let
. R . 1 . .
Xp = ((#La5)))1<i<p, 1<j<n and N = \/—n—p(XpXé —nlp).
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Using Lemma 1 (i) and (ii),

sup |FNe (2) — FNe (2)] < (p! > (V) - A(N))? < nipg) Tr (X, X, + X, X)) Tr (E(X,) (E(X))).
i=1

Using the moment condition, the condition on the truncaléwel, the conditior,k, = O(np), and an
appropriate strong law of large numbers for independertamamvariables, it is easy to show that the above
expression tends to 0 almost surely. We omit the tediouslsleta

On the other hand,

. 1 R
g (FNr, FPr) < ];Tr(Np — By)?

1 & 1 &
2— Z Z ‘TL(zl ExL(zl 2 2— Z xL(z l)))2 = M + N say.
=1 =1 i—1 z=1

Note that for every, j, there existgx such that

(Ez? + E%22).  (26)

0<1-Eif ;) =Ea2l(|lza] > en'/*) + (B 201(|70] > e,n'/*)? < 2nl/2
p

From (26), it is immediate that

sup(Ez? + E%i))z — 0 since epp1/4 — 00.

a

n°p 1
—
P

Now we will deal with the first term)\/.

y4 n 2
> < :cLW i%@m) = aq (83, —Bi2)* + ) baor (&2 — Ed2)(E2, — E2Z)

=1 e aFa’

=T, + Ty (say)

wherea, by, o > 0. Obviously,

#la€Z:ia,>1} <k, and #{(,a) € Z*:a# by > 1} < k:g.

Also, a, < o, for all a andb,, o < &%y, for all o # o’. Hence,

1 1 . . . A
p P p b @ aFa’
agkp ~2 2
< zp: 4n2p4 Sl;p]E(ﬂj‘a Z SUpE Eﬂj‘ )
2]{72
<supz 1/4 )4Ew —|—supz % p4 E? i<oo

where we use the fact that,k, = O(np) anday, < p. Thus, T,/ (2np?) — 0 a.s.
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It now remains to tackldy,. Lety, = #2 — Ei2, a € Z. Then{y,} are mean zero independent
random variables.

> BT = 3 1B Y i)
p

p aFa’
Z 4n2 Z b ’Eyaya
P oz;éoz

PP {2,
<supz424E < 00.

Thus by Borel-Cantelli lemmd, /(np?) — 0 almost surely and this completes the proof. g

Remark 2 (a) From results of Bai and Yin (1988) [3], it is known that ftive special case of sample
covariance matrix, finite fourth moment is needed for thevabapproximation to work, and inter alia, for

the existence of the LSD almost surely. Here the link funéianore general, necessitating slightly higher
moments.

(b) If we carefully follow the above proof, finiteness of #fie¢ + 1/X) + J-th moment was only needed
in proving thatsup,, |F"? (x) — FNo (z)| % 0. If we impose the weaker assumptiom, Ex < oo, then
qp < €,/n for suitably chosen sequende,} | 0 andsup, |F"r(x) — FNP(x)| L. 0 holds and hence
D(FB» FNv) — 0 in probability.

Having approximateadV,, by B,,, we now need to establish the behaviour of the momenis,ofT his is
done through a series of Lemma, finally leading to Theorerm&hé subsequent discussion, we will use
the following notation.

T (w) = {r € M(w) : 7(2i — 2) # 7(2i) V1< i< h},

I (w) = {r € I*(w) : (20 — 2) # 7(2i) V1 <i < h}.

Analogous tdI(w) andII*(w), we define, for several words,, ws, . . . , wg,

M(wy, w2, ...y wy) = {(71, 72, ..., 7k) 2 wils] = wj[l] & &, (s) = &xy (0), 1 < iy j < kY,

H*(UJ1,’LU2, s 7wl€) = {(71-177727 s ,ﬂ'k) : wz[k] = wj[é] = gﬁl(k) = gﬂj(g)a 1<4,5< k}
(Definition of £, has been given earlier.)
Moreover,

H;,,g(wl,wg,...,wk) = {(7T1,7T2,...,7Tk) S H(wl,wg,...,wk) : 7TZ'(O) 75 7Ti(2),...,7'('i(2h— 2) 75
mi(2h), 1 <i < k}.

For Lemma 2-5, we will always assume that the link functioratisfies Assumption A(ii) and A

Lemma 2 Fix h > 1 and a matched word of length2h. Then we have

My

Iz (w)| < Kpp' 172 (27)

where K}, is some constant depending bn
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Proof of Lemma 2. Let k be the number of odd generating vertices, denoted Ry; — 1), 7(2i —
1),...,m(2ip — 1) wherel < i3 < iy < ... < i < h. We wish to emphasize tha; < h since
{&(2h — 1),&:(2h)} cannot be a matched edgegs$2h — 1) # £.(2h) by A'.

Recall the definition of Type | and Type Il generating vertéxeg in Section 2. Let be the number of
Type | odd generating vertices. Since total number of geimgraertices apart fromr(0) is |w|, we have
t < [lwl/2.

Now, fix a Type Il generating vertex(2: — 1). Also, suppose we have already made our choices for the
verticesr(j), j < 2i — 1 which come beforer(2: — 1). Sincer(2i) is not a generating vertex,

£x(21) = & () forsomej < 2i — 1. (28)

(Note that sincer(2i — 2) # w(2i), we cannot have,(2i) = &,:(2i — 1) by Assumption A). Now
that the value of(j) has been fixed, for each value of2:), there can be at modt many choices for
m(2¢ — 1) such that (28) is satisfied. Thus, we can only have at pésnany choices for the generating
vertexr(2: — 1). In short, there are onl{)(p) possibilities for a Type Il odd generating vertex to choose
from.

With the above crucial observation before us, it is now easyonclude

’H# (w)’ _ O(p#even generating vertices# Type Il vertices n#Type | verticea _ O(pl—i-[‘”‘%}n[@]).

Lemma3 (i) Foreveryh > 1 even,

‘p_lE Tr B;,L - Z p_l_h/zn_h/2|l_[*¢(w)|‘ — 0.
w matched|w|=h

(i) Foreveryh > 1 odd,lim,_...p~'ETr B} = 0.

Proof of Lemma 3. Let X, be as defined in (14) with,, replaced byi,. From the fact thakz, = 0 and
B;; = 0 for all i, we have

p 'ETr BI},’ = p_(1+h/2)n_h/2 Z Z EX,.

w matched mell(w),
m(2i—2)#m(2i), V 1<i<h

Fix a matched worab of length2h. Itinduces a partition oh L-valuesé, (1), &x(2),£x(3), ..., &x(2h)
resulting injw| many groups (partition blocks) where the valueg pfvithin a group are same but across
the group they are different. Léf, be the number of groups of size Clearly,

Cy+C3+ -+ Cop = [w| and 2Cy + 3C3 + - - - + 2hCyy, = 2h.

Note that
sup |E22 — 1| = o(1) and supE|i,|* < (epn1/4)k_2 VEk>2.
(03 (03
Thus ifr € II(w),
0.C2+1.C3+..4(2h—2).C2p, (epn1/4)2h—2\w|.

Elde, (1)fe, @) - Bepom| < (pn'?)
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Using Lemma 2,

~ ~ ~ —9lw |w|+1 M
> Elic, (1)ic, o) - e, (am)| < (en'/ =2 (Kipt 570l 5)

mell(w),
T(2i—2)#m(2i) ¥ 1<i<h

= (ep)2h—2\w|nh/2—(\w|/2—Hw|/2])p1+[\w\T+1]‘
Case | Either|w| < h or |w| = h with h odd. Then

1 . )
R > ElZe, (1)Te,(2) -+ Ten(om| — 0 (29)
mell(w),

7(2i—2)£m(24) V 1<i<h

Case Il If |w| = h with h even, then

. 1 . . .
llpﬂl p71+h/2nh/2 Z Eiﬂgw(l)ﬂ?g,r(z) N $£W(2h)
mell(w),
w(2i—2)#m(21) V 1<i<h
1

I h

. 1
= lim W’H#(U})’
. 1 X
This completes the proof. O
Fix jointly matched and cross-matched wofds , ws, ws, wy) oOf length(2h) each. Let

k = total number of distinct letters imvy, ws, w3 and wy. (30)

Lemma 4 For some constant§’, depending orh,

#{(71‘1,71‘2,71’3,71’4) € I(wy, we, w3, wy) : m;(0) # mi(2),...,m(2h — 2) # m(2h),i = 1,2,3,4}
Cpp*t2hn2h if xk=4h or 4h —1
= /I B 3 B ) R (31)
Cpp* = Inlz]l if k< an—2.

Proof of Lemma 4. Case | k = 4h — 1 or 4h. Since the circuits are cross-matched, upon reordering
the circuits, making circular shift and counting anti-dtadse if necessary, we may assume, without loss of
generality,&, (2h) does not match with an-value inm; whenk = 4h — 1. Because of cross matching,
whenk = 4h, we may further assume thgt, (2h) does not match with ang-value inm; or 7.

We first fix the values of the-verticesr;(0),1 < i < 4, all of which are even generating vertices. Then
we scan all the vertices from left to right, one circuit ati@other. We will then, as argued in Bryc, Dembo
and Jiang (2006) [7], obtain a totédh + 2) generating vertices instead ofh + 4) generating vertices
which we would have obtained by usual counting.

In our dynamic counting, we scan tlievalues in the following order:
§7r1(1)7 §7r1 (2)7 §7r1 (3)7 e 7§7r1 (2h)7 §ﬂ2(1)7 gﬂz (2)7 e 7§7T2 (2h)7 Sﬂg(l)a e 7§7r4(2h)-
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From the arguments given in Lemma 2, it is clear that for an\atex;(2j — 1) to be Type I, both
&x, (25 — 1) andé,, (27) have to be the first appearances of two distibelues. So, total number of Type |
n-generating vertices is at most2.

Case Il. K < 4h — 2. We again apply the crucial fact that for an odd vertef;j — 1) to be Type
|, we need botft (25 — 1) and&,,(27) to be the first appearances of two distirdetalues, while the
circuits being scanned from left to right and one after aaotl$ince there are exactkydistinct L-values,
the number of Type | odd vertices is not more thaf2. Combining this with the fact that total number of
generating vertices equdls + 4), we get the required bound. O

Lemma 5 For each fixedh > 1,

iE[p‘l(Tr B;,L — E(Tr B;f))]4 < 0.
p=1

Proof of Lemma 5. As argued earlier and from the fact that the diagonal el¢snafiz,, are all zero, we

have
* 4

E[p~!(Tr B} —E(Tr BM)]* = p~ 7 3" S E([[ (X, — EX,))
* =1
where the outer surh_, is over all quadruples of wordsv;, we, w3, ws), €ach of lengti2h and which are
jointly matched and cross-matched. The inner Suynis over all quadruples of circuit%(m, T, T3, T4) €
(w1, wa, w3, wy) : 7(0) # m(2), ..., m(2h — 2) # 7(2h),i =1,2,3,4}.
Note that by definition of, x < 4h for any jointly matched quadruple of words, , we, w3, w,) of
total length8h. Fix w1, wa, w3, wy, jointly matched and cross-matched.

Case Ll k = 4h or 4h — 1. Then the maximum power with which ariy, can occur inH?:1 Xm. is
bounded byt. But sincesup, E(i4)* < co, we immediately have (TT;_, (Xr, — EX,,))| < co. Thus,
by Lemma 4,

p A2y =2 Z Z*:E(ﬁ(xw -~ Exm)) — p A2y =2h (22 2hy — O(p72),
*: kE{4h—1,4h} i=1
Case Il. Suppose now that = 4h — k, k > 2. Borrowing notation from Lemma 3, we have
Co+Cs3+...+Cg, =k and 205 + 3C3 + ... + 8hCyp, = 8h.
These two equations immediately give
C3+2Cy + ...+ (8h — 2)Cyj, = 8h — 2k = 2k.
Itis also easy to see that

Cgk+2+i:0ViZ 1 and C5+2C6+...+(2]€—2)Cgk+2 <2k — 2.

Since the input variables are truncated,at'/* and sincesup,, E(x%) < oo,

1 N . g 51206t +(2k=2)Coptn 2k—2
supE]HXm] < E(2q)"n 1
[e% .
i=1
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Thus, by Lemma 4, for ang > 2,

4

et S SB[k B €t 0
*: ke{4h—k} i=1

= O( —4- 2hp—2hp4+[4h k+1] [4hk k}o(p%)

k:

For a quick explanation of the first equality above, just rib& total power of: in the previous expression
is negative. O

We are now ready to summarize the results of Theorem 7 and laePa in the following theorem in
Regime Il

Theorem 8 Letp,n — oo so thatp/n — 0 and Assumption R2 holds. Suppdsgesatisfies Assumptions
A(ii), A’ and B. Supposée, } satisfying{e,} | 0 ande,p'/* — oo is appropriately chosen. Then

(i) Foreveryh > 1even,

p_lETl“Bg _ Z p_(1+h/2)n_h/2|1'[’;(w)| =0.
w matched|w|=h

(i) Foreveryh > 1 odd,lim,_..p~'ETr B} = 0.
(i) Foreachh >1,p~! Tr Bh — Ep~' Tr B} “3 0.
(iv) Bo, = limsup, Ew matched? —(1+h) ‘h\H* (w)|, satisfies Carleman’s condition.
|w|=2h
As a consequence, the sequefigé'r } is almost surely tight. Every subsequential limit is symimet
and sub Gaussian. The LSD pF"»} exists almost surely, iffm 3., matcheqp™ " n " |TI% (w))
|w|=2h

exists. These give thex)th moment of the LSD.

Below we will deal with two matrices with different link futions L(Y) or L(?). The corresponding
relevant quantities will now be denoted with added supgtscfl) and(2) respectively.

Theorem 9 Let L™ and L) be two link functions satisfying Assumptions A(if),and B and agreeing on
the set{(i,7) : 1 < i <p, 1 <j <n, i <j}. Then, for each matched wotd of length(4h) with

|lw| = 2h,
1

s ;

1Y (w) — 12 (w)| — 0.

Hence, in Regime Il under Assumption H@fzﬁi),z’ = 1, 2 have identical asymptotic behaviour.
Proof of Theorem 9. Define for each link functiod®), ; = 1,2
= {remPw):1<a@i+1) <p}, j=12...,2n

Now, it is enough to prove that for a fixeil

1

F — 0.
phtip h’ ‘
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Consider the transformation — 7, wherer is also a circuit with
7(0) =n(2)), 7(1) =m(25+1),...,7(dh —1) =7(2j — 1), 7(4h) = 7(2j).

Then it is easy to show that the map— 7 is a bijection betweeﬁy) anngi) and thereforeLF§i)| =
|

1 I '

Observe thatr(1) is always a Type | odd generating vertex. By Lemma 2, we HaWwé) (w)| =

O(p"*'nM) . Since, in the definition ofgz) we are restricting one of the Type | odd generating vertexeto b
ap generating vertex, we are going to lose a factor of the bound and pick up a factor piinstead. Thus,

0| = O(p"*2n"~1) and hence
1 () D
Jrigh Uy 1 =0 (7)o

O

The symmetric Toeplitz link functiod. (i, j) = |i — j| does not satisfy Assumption’ Aut the asym-
metric Toeplitz link functionL(i, j) = i — j does. Hence the above result is not applicable for this pair
of link functions. However, under Assumption A, we can dileclaim the closeness of LSD, but only in
probability.

Theorem 10 Assume{z,,} are independent with mean zero aneb,, Ez2 < oo. Supposd.(!) and L(?)

are two link functions such tha™ (i, j) = L(®) (i, j) on the se{(i,5) : 1 < i < p, p < j < n} and both
satisfy Assumption A. S&t = ((z ) (; ;y))pxn @MDY = ((z 12 (; j)))pxn- Then

dnr ( PV A1) Fﬁmpm—fp)) P,

Proof of Theorem 10 Let X = [X, : Z] andY = [Y; : Z] where X, andY, arep x p sub-matrices ofX
andY respectively. Note that

Ed, ( FV A =T) Fﬁmpm—fp)) < n P ETHX X — YY)
=n"pT2ETr(Xo X} — YoYg)? < 2n ' (ETr(p ' XoX()? + ETr(p~ 'YoYg)?) .
Calculations similar to those done in Regime | now imply that
Ep~'Tr(p ' XoX))? < K and Ep 'Tr(p~'YpY))? < K,

for some constank’. Sincep/n — 0, the result follows immediately. O

5 Proofs of Theorems 1-4
For convenience of counting, in Regime |, the pair matchedi#/are classified as follows. In a pair matched
circuit of length(2h), there areh distinct L-values and hencg: + 1) generating vertices. But the number

of odd (or even) generating vertices depends on the comegmpword. Note that there is always at least
one even generating vertex0), and the number of even generating vertices is bounded bt

W, = {w : wis pair-matched of lengthh with (¢ + 1) evengenerating verticgs (32)
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Obviously the total number of odd generating vertices fooadan W, 5, is (h — t).

Symmetric words. In most of the examples, due to the circuit restrictionyambrds where each letter
appears in an odd and an even position have positive cotiribin the limit. We call thesesymmetric
words. Let

Wy, = {w : w € W, andw is symmetrig.

5.1 Proof of Theorem 1

(i) In view of Theorem 6 we will only have to show that, for eakh> 1 and each wordv € W4,
lim,, p~1n~h|IT* (w)| exists.

We first show that the circuit condition implies that wordsietharenot symmetrico not contribute in
the limit.

Lemma 6 Suppose/n — y € (0, o). Letw be any pair-matched word of lengf2h) which is not
symmetric. Then in Regime I,

p~ I (w)] — 0 as p — co. (33)

Proof of Lemma 6. Fix a pair-matched non-symmetric woxdof length(2%) and henceéw| = h. LetS
be the set ofh + 1) indices corresponding to generating verticemofNow because of the circuit condition
m(0) — m(2h) = 0, we must have

§r(1) = &x(2) +&:(3) — ... +&x(2h — 1) = &(2h) = 0. (34)

Let us enumerat§, left to right, as{0, i1, 72, ..., ix} and for each; € S\ {0}, letj; be its matching index,
SO that,fﬂ(lt) = fﬂ(jt),it < jt-

Sincew is not symmetric, there exists at least one pair of matcmdges of the same parity. Because
of equation (34) number of pairs of matchiigvalues with odd indices is same as the number of pairs
of matching L-values with even indices. Consider the $ebf all indices of S \ {0} whose matching
counterpart is of the same parity. Ligl,x = max P. Let jmax be the matching index fafax.

So forany: € S\ {0} with i > imax, &-(7) has a matchind.-value with index of opposite parity and
hence if they are substituted in equation (34), they haveesaue but opposite sign. Therefore, they cancel
out each other.

Now, according to our convention, we start choosing geimgraftertices from the left end of the circuit.
We stop when we reach(imax). BY this process we have fully determined the valueg&f(¢)} for all
t < imax- On the other hand, if we considéf(t) with ¢ > inax then we immediately realize that

1. Either its value is already determined. This is the casermits matching counterpart appears at the
left of &, (imax)-

2. Or, its matching counterpart has index of opposite pastyve have observed before.

Thus in equation (34), except (imax) and&, (jmax), all other{¢,(t)} are either already determined or get
cancelled with their own counterpart. So, (34) for€e&max) + £x (Jmax) = 2&x (imax) to take some particu-
lar value. Thereforer(imax) has no free choice though it is a generating vertex. This en&radiction and
the proof of the Lemma is complete. O
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Therefore, going back to the proof of part (i) of the theorem,

h—1
: p 1 «
B :hgl;(ﬁ)t > @)l

wewgh
Fixaw € WP, If w[2i] = w[2j + 1] then we have following restriction,
(20 + 1) — m(2i) = 7(25) — 7(25 + 1).

Let G be the set of indices of sizgh + 1) corresponding to all generating vertices. It is easy to see
that if we consider the abovelinear restrictions on the vertices of the circuits and dbtake into account
the circuit conditionr(0) = w(2h), then each dependent vertex can be written im@uemanner as an
integral linear combination of generating vertices whidtwr to the left of that particular vertex in the
circuit. Mathematically,

m(i)= > ai;w(j) forsomea,; € Z.
J:j<i, jEG
Note that fori € G, a;; = I{i = j} and sincew is symmetric we haver(2h) = 7(0) so that the circuit
condition is automatically satisfied.
To compute the scaled limit ¢fT* (w)| introduce the following notation. Define

(21 (2t + 1
to; = %, loiy1 = % and y,, = p/n.

From the above discussion,ii#Z G U {2h}, t; can be written in a uniqgue manner as a linear combination of
tg 1= {tj : J € G}, namely,

T ._
tai1 = Ly n(ta) = Z agi—1,2j—1t2j-1 + Z Yn@2i-1,2jt2;
2j—1€q, 2j—-1<2i—1 2j€q, 2j<i
T ._
tai = Ly »(tc) = Z (1/yn)agi2j—1t2j—1 + Z az;,2jt2;-
2j—1€G, 2j—1<2i 2j€G, 2j<i

Itis obvious that these linear combinatimgn(tg) depend on the word but we suppress this dependence
for notational brevity. Thus the number of element$lif{w) can be expressed alternatively as follows:

|H*(w)| = #{(t(]»tla o 't2h) 19 € {1/]9, 2/p7 s 7p/p}7 toj—1 € {1/71,2/71, . ,’I’L/’I’L}
p p . . .
andgtgi —12i+1 = Et% — tgj_l if ’LU[2Z + 1] = ’LU[Q]]}
= #{tG itg€{1/p,2/p,...,p/p}if gisevenand, € {1/n,2/n,...,n/n}if gisodd g € G,

0<LE,(te) <1,Vig GU {2h}}.

It does not take us long to recognize the above complicatpdesgion as a multi-dimensional Riemann
sum. Therefore from the theory of Riemann integration, aisvergence follows and we have

h

-1
1
_ t : *
=2y > Jim s T (w)]
t=1 wEWRh
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h—1

RS /1/1.../11(0<LT(tG)<1 Vig GU{2))dic
o Jo ‘ - 7
ht

=1 wen?, 0
1
where L] (t¢) is same ad.,, (t¢) with all y, being replaced by. This replacement can be justified by
Polya’s theorem as we can think of eaglas a discrete uniform random variable converging (&, 1)
random variable which is continuous. The above argumenyslioat in case,, — y € (0,00), the LSD
of A,(T) exists.

(ii) We now consider the casé — 0 and prove part (i) of the theorem. In view of Theorem 8, weyonl
need to show that for each matched word of length), with |w| = 2h,

lim p_(1+h)n_h]1_[;(w)\ exists.

p—00

Note that if = € I, (w), then&. (i) # (i + 1) for all i odd. Hence, there can be only two types of
matching between thé-values as listed below:

1. Double bond A matching is said to have a double bond if there exists twaseoutive odd-even
L-values which match pairwise with another two consecuto@-evenL-values. There can be again
two possibilities,

(@) Crossing &:(2i 4+ 1) = &:(25 + 2) and&,(2i + 2) = £,(2j + 1) for somei < j.
(b) Non-crossing &,(2i + 1) = &,(2j + 1) and&, (2 + 2) = &:(25 + 2) for somei < j.

2. Single bond The remaining types of pairing will be termed as single badrftky give rise to follow-
ing type of equations:

(20 + 1) = &x(s) and&, (20 + 2) = &, (t) where{s,t} # {25 + 1,2 + 2} for all j.
Claim. Let w be a matched word of lengtth. If w has a single bond, then

Jim =PRI (w) = 0,

Proof of the claim. Recall the definition of a Type | generating vertex. It isacléhat if 7(2i — 1) is
Type I, then

Ex(s) =& (20 — 1) or &:(s) = &x(20) = s > 2i.

We show that number of Type | odd generating vertices istitiliess tham. Then the proof will follow
immediately since the total number of generating vertis¢8h + 1).

Total number of odd vertices (generating, non-generatiggther) is(2h). Let us form two mutually
exclusive and exhaustive sdtfsandV whereU contains all odd vertices involved in double bonds &hd
contains all the rest of the odd vertices. Quite clearly&if(2u; — 1), & (2u1)} = {&x(2ug — 1), &7 (2ug)}
is a double bond with; < g, thenm(2u; — 1), m(2ug — 1) € U andn(2u; — 1) is a Type | odd generating
vertex. Thus, total number of Type | odd generating vertinds is (1/2)|U|. Next we argue that the total
number of Type | generating verticesWnis strictly less thari1/2)|V| and hence, the total number of Type
| odd generating vertices is strictly less thian

Note that exactly half of the odd vertices, which are invdlve double bond matching, are Type | odd
vertices. Now, let us count the number of Type | odd verticegtvare involved in single bond matchings.
We list the Type | odd generating verticeslinas

Vi ={m(291 — 1),m(292 — 1),...,m(29s — 1)}
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and the rest of the vertices of by
Vo=V \ Vi ={n(2d; —1),7(2dy — 1),...,7(2d; — 1)}.

Fori # j, write 20 — 1 «<» 25 — 1if {&x2i—1), &r2iy ) N {&r2j-1), n(25)} # 0. From the definition of
Type | odd generating vertex, it is clear ti2g — 1 < 2g; — 1 is not possible.

We claim thad; — 1 < 2g; — 1 and2d; — 1 « 2g,, — 1,1 # m cannot occur simultaneously. Because
if that happens, then we have

w(2d; —2) —w(2d; — 1) = m(2¢94) — (29, — 1)
m(2d;) —m(2d; — 1) = 729y —2) — (295 — 1), {a,b} ={l,m}.

Subtracting we get,
29y — 1) — (294 — 1) = 7(2d; — 2) — w(2d;) + (295 — 2) — 7(29q)-

Vertices on the right side are all even and hence the numbenai€es on the right side i9(p). On the
other hand, in the left side we have two Type | odd vertice edavhich has free choices of the order
This is an impossibility.

So in summary, the relatior> associates a vertex i, with two vertices inV; (single bond), but a vertex
in V4 is not associated to two distinct verticeslin Therefore,|V;| < [Va|. So the total number of Type |
odd generating vertices Wi is strictly less thanV'| /2. Thus, total number of Type | odd vertices is strictly
less than(|U| + |V'|)/2 = h which concludes the proof of the claim. O

Reverting to the proof of part (ii), we may now, for the resbaf calculation, consider only those words
which produce no single bond. By the circuit constraint, \&eeh

En(1) = Ex(2) + oo 4 Ex(20 — 1) — Ex(20) + ...+ Ex(dh — 1) — £ (4R) = 0. (35)

Note that ifi forms a non-crossing double bond witthen¢(2i — 1) — £:(2i) = &:(25 — 1) — &:(27). If

w has at least one non-crossing double bond then (35) leadsdntavial restriction on the vertices of the
circuit reducing the number of even generating vertices g and thusf(”h)n‘hyﬂ;(w)\ — 0. Thus
we may restrict ourselves to those words which give rise tp arossing double bonds. Let us fix one such
word w of length (4h), with |w| = 2h. Now let us consider a pair of equations forming a crossingptio
bond:

m(2i) —m(2i + 1) = 712/ +2)—m(25+1)

T(2i4+2) —m(2i+1) = w(2j)—w(2j+1),  fori<j (36)

In the above equations(2i + 1) is a Type | odd generating vertex an@2;j + 1) is a non generating odd
vertex which pairs up withr(2: + 1). Note that,

72 +1) = 7(2j+2)—7(20)+m(2i+1)
= m(2)) — m(2i+2) + 7(20+ 1).

Since—p < w(25 + 2) — w(2i) < p, if 7(2i + 1) is chosen freely betwegnand(n — p), we do not have

any restriction on even vertices imposed by odd vertices,igh even vertices can be chosen independent of
the choice of odd vertices satisfying the following regioias:

m(28) — w(2i +2) = 7(25 + 2) — 7(2]). (37)
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Butif (2 +1) € {1,2,...,p—1}U{n—p+1,n—p+2,...,n}, then the choice of even vertices is
restricted by the choice of(2i + 1) because of the constraint< 7(2j + 1) < n.
Define a new wordv of length2h, so that

@fi] = wlj] iff w2i — 1] = w]2j] and w[2i] = w[2j — 1.

It is easy to see thath| = h. Let 7 be a circuit of lengtt2h given by 7 (i) = 7(21).
SinceZ — 0,

p I (w)] = p~ T I (w) N {7 i p < w(26 — 1) < —p, V1 < i < 2k} +o(1)
p~ UM i) = dlf] = #() - #(i+ 1) = 7 + 1) = 7(5)} + o(1).
The above restriction ofa is precisely the same restriction on pair matched circditermth 24 that is

obtained in the symmetric Toeplitz matrix. See for exampigcBDembo and Jiang (2006) [7] and Bose
and Sen (2008) [6]. Also, note that every word of len@thwith h letters can be obtained through this

procedure. Therefore, in this case, the LSIZV%(AP(T) — 1) is L. O

5.2 Proof of Theorem 2

(i) By Theorem 6, we know that thie-th moment of Hankel LSD is given by

h—1
S 1 p t 1 *
B = lim, ;@ > S @)l (38)

’LUEWt’h

We note thafll*(w) C I, (w) wherell (w) is as defined in (16) with symmetric Hankel link function
L(i,7) =i+ j and each vertex having same range betwleandmax(p, n) since in the latter case we have
more circuits but fewer restrictions. From the argumentemin Bose and Sen (2008) [6] for symmetric
Hankel link function, it follows that for any non-symmetneord w, n~"*D|I1*(w)| — 0. Thus, (38)

reduces to
h—1

1 P 1 *
ﬁh—phjgoZ(ﬁ) Z WIH (w).

t=0 wew?,

Let us first consider the case when the link function is symimétankel, i.e. L(i,j) = ¢ + j. In that
case for a wordv € WY, , if w[2i] = w[2j + 1], we have the restriction,
(20 4+ 1) + w(2i) = 7(25) + (25 + 1).

Just as in the Toeplitz case, we can express each vertex igweumanner as an integral linear combination
of generating vertices occurring to its left.

m(i)= > bim(j) forsomeb,; € Z, (39)
j:i<i, jeG
with b;; = I{i = j} if i € G andw(2h) = 7(0) sincew is symmetric.
We scale the vertices as before and call then8imilar to the Toeplitz case, we defirﬁéfn(tg) as the

linear combination which expressgsn terms of ‘free cordinates; and L (t) as its limiting version. It
immediately yields

1 1 1
lim #ﬂ“{*(wﬂ :/O /O /O 100 < LH(te) < 1, Vi ¢ GU {2h))dt (40)

p—op

h+1
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Now consider the asymmetric link function. Here instead al€alating the(h + 1)-dimensional Eu-
cledean volume of the entire sé0 < L (t¢) <1, Vi ¢ SU{2h}}, we need to take into account the
restricting hyperplanes that arise from asymmetric natifirthe link function since it assumes different
signs around the diagonal. So, unlike the symmetric cagejntiposes the following extra restrictions in
addition to the usual equality between tWevaluest, (2i) andé, (25 + 1):

Either m(2i + 1) < 7w(24),7(2j + 1) < w(25) Or w(2i + 1) > m(2i),7(25 + 1) > 7(25).

Thus the size of the sé&t*(w) is same as the cardinality ({ftc 10 < Lfn(tg) <1, Vi¢ GU{2h},

SOMLEL 1, (t6) = ynLdL,(t6)) = SONLE, 1, (t6) — yL 4L, (1)) if w[2i + 1] = w[2j]} , where each
t;,i € G takes values i{1/n,2/n,...,n/n} or {1/p,2/p,...,p/p} depending on whetheris odd or
even.

This entire set may be written as a product of indicator fiomst in terms of{ L ()}, albeit in a
complicated manner. When summed o¥gr in the limit this equals the correspondlng Riemann integra
where the indicators are replaced by their limits apds replaced byy. Let us denote the giant indicator
function by f (). So, we have

-1

h—1
m=3y 3 Jim 1w = >0 Y // [ eome @

weWSh =1 weW,?,L

~

(i) By Theorem 9, it is equivalent to prove the existencelwd £ SD for the symmetric Hankel case.
Along this line, we can just imitate the argument for the as\gtric Toeplitz matrix in Regime Il. Here also
the essential contribution comes from the words having enbgsing double bonds. But we now have a
different pair of equations instead of (36) in Toeplitz case

m(2i) +7(2i + 1) = w25 +2)+7(2j+1)

T2+ 2) 472 +1) = w2 +r(2j+1),  fori<j (42)

But once we cancel the odd vertices as we did in the Toeplite,cae are again reduced to the Toeplitz
type restrictions on even vertices. We omit the details.ddeme conclude that the LSD exists and’is. [J

5.3 Proof of Theorem 3

(i) We need to show that for ea¢h> 1 the following limit exists.

h—1
T D\t 1 %
5h—pll{§o§ (E) > WIH (w)]- (43)
t=0 ’IUEWtT}L

Similar to Hankel case, we note tHat (w) C H*ziz(w) wherell’ (w) is as defined in (16) with symmetric
reverse circulant link functiot.(i,7) = (¢ + j) modn. In Bose and Sen (2008) [6], it has been argued
that for symmetric reverse circulant link function, theccit condition enforces that for any non-symmetric
word w, n~ "D |IT*(w)| — 0. Thus, the sum in (43) is only over symmetric words,

h—1
m 3 P 3 1 x
ﬁh = lim (_)t 1 h—t|H (UJ)|
p—00 n pttin
t=0 wEWRh
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It now remains to show that for each symmetric ward: WY, p~(+Yn=("=D|11*(w)| converges.

Let us first consider the symmetric link functidi(i, j) = (i + j) modn. In this case, iftw[i] = w[j],
we obtain the restriction of the following type:

(w(i) +7(i — 1)) modn = (7(j) + «(j — 1)) modn,

which is equivalent to
(m(i) +7(i—1)) — (7(§) + 7(j — 1)) € nZ.

We now have exactly the same set of equations as in the Haakel(89), with some added relaxations
given as follows
m(i)— > biym(j) €nZ forall i ¢ G.
Jiy<i, jeG
If i ¢ GU{2h}, we can chooseuniqueintegerk; , = k; (7 (j) : j € G)suchthat < ..., ;cqbi;m(j)+
k; » < n.Thus once we fix the generating vertices, there is exactlycboie for each of the non-generating
odd vertices. For the non-generating even vertices, thangs bit complicated.

For a real numbeu, let
p(a) :=max{m € Z:m < a}, pa):=a—p(a).

Using these notatiork; ,, can be written as the following

ki,n o 1 o .
=—o| > b))

J:j<i, jeG

Now let us fix2i € G,i # h. We have at leasy,,] choices for the vertex(2i). Moreover, we can have
an additional choice for (2:) if

D baigm(i) + kain < p— lyaln.
§:4<2, j€G

Dividing by n, the above condition can be rewritten as
YnLb, ,(t6) + 0(ynLd (t6)) < yn — [ynl-

LetS = {2i:2i ¢ G,i # h}. From the above discussion, we can conclude that for the strimtink
function, the size of the sét*(w) whenw € W}, is given by
[yn]h_t_lpt+lnh_t + Z #{tG : ynLg,n(tG) + Q(ynLg,n(tG)) < Yn —[yn), V2i € Sl}'
P£S'CS

Note thato has discontinuities only at integer points. Therefore, aetthe following convergence

: 1 «
o2l et ()

1 1
e Y /0 /0 L(yL(te) + oL (1)) <y — o], ¥2i € §')dte.
0£S5'CS
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Coming back to the asymmetric case, we now have extra restse
sgn(m(2i + 1) — w(2¢)) = sgn(m(2j + 1) — n(25)) if w[2i] = w[2j + 1].

We can now incorporate restrictions $t#i1 — yt2;) = sQn(t2j4+1 — yt2;) in the integral as we did in the
Hankel case. The even non-generating vertices, except(f3r) which is constrained to equal tg0), do
not have a unique choice once we determine the generatitigegrinstead there afg,| + 1 choices for
each of them as observed above.

In the symmetric case, for many of the choices, the integveamisimply equal td. But here due to the
additional constraints regarding signs, the integrandtsnecessarily equal to and simplification is not
possible anymore and all the relevant indicators will appehe integrand. We omit details.

(i) In Regime 1, invoking Theorem 9, it suffices to work withe symmetric link function.(i, j) =
(i+7)modn. We again imitate the proof of the Toeplitz case. Here a glpiestriction in a word containing
only crossing double bonds reads as,

(m(2i) + m(2¢ + 1)) modn = (m(25 +2)+7n(2j+1)) modn

(n(2i +2) + 7(2 +1))modn = (n(27) + 1(2j + 1)) modn,  fori < j. (44)

As in the case of Toeplitz and Hankel matrices, we choosergéng odd vertices betwegrand(n—p),
the only restriction that even vertices need to satisfy is
(m(2i) — (20 4+ 2)) modn = (w(2j + 2) — 7(27)) modn.

But sincep is negligible compared to, and an even vertex can take values betwieamdp, this is equivalent
to usual Toeplitz restriction

(m(20) — m(2i + 2)) = (7(2) +2) — 7(27)) .

Hence, the LSD exists and the limit is exactly-. 0

5.4 Proof of Theorem 4

(i) As in the previous examples, we need to prove that for éachl the following limit exists.

h—1
. K p t 1 *
B =lim > (D) > e COLE
t=0 wewt,h

We now obtain exactly the same set of equations as in the iToepke with some added relaxations given
as follows
m(i)— Y aiyw(j) €nZ, forall igG.
Jiy<i, jeG

In the Toeplitz proof, we already argued that for any non+syatric word, > . ass,;7(j) = m(0)
induces a nontrivial restriction on the generating vegticéOn the other hand, we can have a bounded
(< [yn]+1) number of choices for the non-generating vertices. Thassyonmetric words do not contribute
in the limit.

The rest of the proof is exactly similar to the (symmetrigjerse circulant case. We omit details to avoid
repetition.
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(i) We note that on and above the diagonal, the circulark fimction exactly matches with the link
function L(i,j) = j — . But the link functionL(i, j) = j — ¢ is nothing but the asymmetric Toeplitz
link function once we index input random variables{as; : ¢ € Z}. We may now invoke Theorem 9 to
conclude the proof. O

5.5 Some comments on the four examples

Supposer/n — y € (0,00) and R1 holds. We make the following observations.

(i) The LSD of A,(T) and A,(H)) are identical. This has been observed in Remark 1.2 of Bryc,
Dembo and Jiang (2006) [7] fgr = n. The same argument extends to the general case of rectangula
matrices. As before I€f}, be thep x n asymmetric Toeplitz matrix an#,, be the symmetric permutation

matrix P, := ((I{i +j = n + 1}))};_,. Then note thafl*) := T, P, is thep x n Hankel matrix, with

symmetric link, for the input sequende:,, .1, : k > 0}. This impIiesH,(,s)HI(f)/ = T,(P.P))T, = T,T,
sinceP, P} = I,,. Therefore, the assertion follows.

(i) The LSD of A4,(C) and A,(R®)) are identical. To see this, first note the distribution of singular
values for thep x n matrix C,, with the usual circulant link functiod (i, j) = (n + j — ¢) modn will be
unchanged if we use a new link functidr{z, j) = (n + i — j) modn. To convince ourselves, all we need
to do is to take{x(;,— i) modn : K = 0,1, ...,n — 1} as the input sequence in the second case.

Second, observe that @p is thep x n ‘modified’ circulant matrix with the link function.(i, j) =

(n+i—7) modn, thenRés) = éan is thep x n symmetric reverse circulant matrix for the input sequence
{z14r : k > 0}. The claim follows immediately.

(iiiy The LSD of A,(H) and A,(H(®)) are different. Note that ifp = n then the square of Wigner
and covariance matrices has the same LSD. It may be temptingjieve that the same holds for other link
function also whem = n. This is not true and the LSD fot,,(H) and A,(H(*)) are different.

To understand why this is so, note that Bose and Sen (200Bj§ihe a certain class of symmetric
words known a£atalan words It turns out that for the Wigner link function, the non-Catawords do not
contribute in the limit and for any Catalan woud

lim n~ P I (w)] = 1

for both, A, (W) and A, (W ()) and hence the LSD faf,,(WW) and A,,(W(*)) are equal.
For the symmetric and asymmetric Hankel link functions, vilelsave for any Catalan word,

lim n~ PO (w)| = 1.
However, there are now additional contributions from thedsovhich are non-Catalan but symmetric (e.qg.
w = abcabc) and they do not agree féf andH (). Indeed, the contributions from such words for asymmet-
ric link function are strictly less than those for symmetnnk functions due to additional sign constraints.
So, h-th moment of the LSD of,,(H) is strictly greater thah-th moment of the LSD ofd,,(H*)). See
also Figure 3.

(iv) Supposep = yn wherey is an integer. Then the-th moment of the LSD of4,,(C') has a closed
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form expression and is given by

h—1

h—1
B = Zyt\wgh’ahftfl =y Z Wehl = hla".
t=0 t=0

Supposé’” is distributed as the reverse circulant LFR-). Let¢ be a Bernoulli random variable having
mass(1 — 1/y) at zero and independent &f. Then4,(C) has LSD~ afY2. This is easily verified by
noting that

E(atY?)" = a"E(6)E(Y?") = oAl

(v) In Regime Il the symmetric link functioh (i, j) = |i — j| does not obey Assumptiod’. However, since
it obeys Assumption A, by Theorem lQ/%(Ap(T(S)) — I,,) has the same LSD as for the asymmetric case,
namelyL.

5.6 Simulations

(i) The histogram from 50 replications for the ESDA§(7") whenp = 300, p/n = 1/3 is given in Figure
1, illustrating Theorem 1 (i).

It is not too difficult to show that the support is unboundedhe Tnore interesting evidence is that the
support of the LSD excludes a neighbourhood of zero. Redwalfor theS matrix withy < 1, the infimum
of the support i1 — \/Q)Q. It will be interesting to prove that the infimum of the suppiorthis case is
also strictly positive and find its value. Such a result wooédof interest due to numerical technique of
“pre-multiplication” by patterned matrices which is usedsblve large systems of sparse equations, see for
example Kaltofen (1994) [12].

40

I I ! 1
35 4 45 5

Figure 1:Histogram for empirical spectral distribution for 50 realions of(1/n)TT" with U(—+/3,v/3) entries wherd is a
300 x 900 asymmetric Toeplitz matrix.
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(i) By Theorem 1 (ii), in Regime Il, the LSD for the asymmetiToeplitz matrix exists. By Theorem
10, the same LSD continues to hold for symmetric Toeplitzrives. In Figure 2 we report the result of a
simulation of these matrices. The two histograms of ESDethas 30 replications each, are similar and the
apparent difference could be only due to the finite sampkreff = 200, p/n = 0.01.

Figure 2:Histograms for empirical spectral distribution for 30 izations ofJ%_p(TT’ — nI) with N (0, 1) entries wherdl” is
a200 x 20000 Toeplitz matrix with asymmetric link function (left) andmsynetric link function (right).

(i) Figure 3 shows the histograms of the ESD from 50 repiares for A,,(X') with p = n = 500 where
X is the symmetric and the asymmetric Hankel matrix. Thistlates Theorem 2 (i).

Figure 3: Histograms for empirical spectral distribution for 50 ieations of (1/n)H H' with N (0, 1) entries wherel] is a
500 x 500 Hankel matrix with symmetric link function (color: lighteiet) and asymmetric link function (color: deep blue).
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