Homework 2

MATH 8660 Fall 2019
Due by $11 / 25 / 2019$

Q1. (circular law)

1. Let G be an $n \times n$ matrix with i.i.d. standard complex Gaussian entries. The eigenvalues (in random exchangeable order) of G have joint density

$$
\frac{1}{\pi^{n} \prod_{i=1}^{n} k!} \exp \left(-\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right) \prod_{i<j}\left|z_{i}-z_{j}\right|^{2},
$$

with respect to the Lebesgue measure on \mathbb{C}^{n}. Take this fact as granted.
(a) Show that the eigenvalues of G form a determinantal point process on $\left(\mathbb{C}, \pi^{-1} e^{-|z|^{2}} d z\right)$ with kernel

$$
K_{n}(z, w)=\sum_{k=0}^{n-1} \phi_{k}(z) \overline{\phi_{k}(z)}, \quad \text { where } \phi_{k}(z):=\frac{z^{k}}{\sqrt{k}!} .
$$

(b) Let L_{n} and \bar{L}_{n} be the ESD and the expected ESD of $n^{-1 / 2} G$ respectively. Write down the density of \bar{L}_{n} with respect to Lebesgue measure on \mathbb{C}. Show that $\bar{L}_{n} \xrightarrow{d} \pi^{-1} \mathbf{1}_{\{|z| \leq 1\}} d z$. The limiting distribution is known as circular law.
(c) Prove that for each continuous bounded function f,

$$
\mathbf{E}\left(\int f d L_{n}(z)-\int f d \bar{L}_{n}(z)\right)^{4}=O\left(n^{-2}\right)
$$

(Note that to compute the LHS above, you need to know m-correlation functions of the eigenvalues of G for $m \leq 4$.) Deduce that almost surely,

$$
L_{n} \xrightarrow{d} \pi^{-1} \mathbf{1}_{\{|z| \leq 1\}} d z .
$$

Figure 1: Plot of the real and imaginary parts (scaled by sqrt(1000)) of the eigenvalues of a 1000×1000 matrix with independent, standard normal entries (picture taken from wikipedia).

Q2. (linear statistics of CUE) Recall that the arguments of eigenvalues $\theta_{1}, \ldots, \theta_{n}$ of a $n \times n$ random Haar distributed unitary matrix (known as the Circular unitary Ensemble (CUE)) forms a determinantal point process with Kernel $K_{n}(s, t)=\frac{1}{2 \pi} \sum_{k=0}^{n-1} e^{i k(s-t)}$ with respect to the Lebesgue measure on $[-\pi, \pi]$. Take $h:[-\pi, \pi] \rightarrow \mathbb{R}$ and define $N_{n}(h)=\sum_{k=1}^{n} h\left(\theta_{k}\right)$.
(a) Show that

$$
\mathbf{E} N_{n}(h)=\frac{n}{2 \pi} \int_{-\pi}^{\pi} h(t) d t
$$

and if h has the Fourier expansion $h(t)=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t}$, then

$$
\operatorname{Var}\left(N_{n}(h)\right)=\sum_{k:|k| \leq n}\left|k \| a_{k}\right|^{2}+n \sum_{k:|k|>n}\left|a_{k}\right|^{2} .
$$

(b) Now take $h=1_{[-\alpha, \alpha]}$ where $0<\alpha<\pi$. Show that

$$
\operatorname{Var}\left(\chi_{n}([-\alpha, \alpha])=\frac{1}{\pi^{2}} \log n+O(1)\right.
$$

(c) Conclude that

$$
\frac{\chi_{n}([-\alpha, \alpha])-\frac{n \alpha}{\pi}}{\pi^{-1} \sqrt{\log n}} \xrightarrow{d} N(0,1)
$$

Q3. © Using the steepest descent analysis, prove the following asymptotics of the Airy function

$$
A i(x):=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{z x-z^{3} / 3} d z \sim \frac{e^{-\frac{2}{3} x^{3 / 2}}}{2 \sqrt{\pi} x^{1 / 4}} \quad \text { as } x \rightarrow \infty
$$

Q4. (non-intersecting random walks) Fix $n \geq 1$. Let $X^{1}, X^{2}, \ldots, X^{n}$ be n independent (discrete-time) biased random walks on \mathbb{Z}, that is, $X_{t}^{i}=X_{0}^{i}+\xi_{1}^{i}+\cdots+\xi_{t}^{i}$ for $1 \leq i \leq n, t \geq 1$ where $\xi_{j}^{i}, 1 \leq i \leq n, j \geq 1$ are i.i.d. random variables with $\mathbf{P}\left(\xi_{1}^{1}=+1\right)=p=1-\mathbf{P}\left(\xi_{1}^{1}=-1\right)$ with $p \in(0,1)$. Let T be a fixed positive integer. Define the transition kernel

$$
P_{T}(x, y)=P\left(X_{T}^{i}=y \mid X_{0}^{i}=x\right)
$$

Let the starting points of these n random walks $X^{1}, X^{2}, \ldots, X^{n}$ are given by $x_{1}<x_{2}<\cdots<x_{n} \in 2 \mathbb{Z}$ respectively. Show that for any $y_{1}<\ldots<y_{n} \in 2 \mathbb{Z}$

$$
\mathbf{P}\left(X_{T}^{1}=y_{1}, \ldots, X_{T}^{n}=y_{n} \text { and } X_{t}^{1}<\cdots<X_{t}^{n} \quad \forall 0 \leq t \leq T\right)=\operatorname{det}\left(\left(\left(p_{T}\left(x_{i}, y_{j}\right)\right)\right)_{1 \leq i, j \leq n}\right) .
$$

