
Homework 1

MATH 8660 Fall 2019

Due by 10/30/2019

Q1. Let X be an n× n matrix with i.i.d. entries with distribution having mean 0, variance 1, and compact
support.

(a) Show that for each fixed integer k ≥ 1, as n→∞,

1

nk+1
E
[
tr(XXT )k

]
→ Ck,

where Ck = 1
k+1

(
2k
k

)
is the kth Catalan number.

(b) Conclude that the expected ESD L̄n := E[Ln] of the matrix n−1XXT converges in distribution
to some probability measure ν. Identify ν.

Q2. (a) Using the bijection to the Dyck paths, prove the following recursion formula for the Catalan
numbers:

Ck =

k∑
i=1

Ci−1Ck−i for k ≥ 1

with C0 = 1.

(b) Using part (a), show that the Stieltjes transform G of the semicircle law satisfies the following
equation:

G(z)2 + zG(z) + 1 = 0 for any z ∈ H.
[ Hint: G(z) = −

∑∞
k=0

Ck

z1+2k for |z| > 2.]

Q3. Let G ∼ G(n, p = 1/2) be an Erdös-Rényi random graph and let A be the its adjacency matrix. Set
Ā = A − E[A]. The goal of this exercise to show that ‖Ā‖ := supx:‖x‖2=1 |xT Āx| = O(

√
n) with high

probability without resorting to the improved moment bound result.

(a) Use Azuma-Hoeffding inequality to show that for a fixed unit vector x ∈ Rn,

P
(
|xT Āx| > t

)
≤ 2e−t

2

for any t > 0.

(b) Let B be a symmetric matrix of size n and let v be a unit eigenvector of B whose eigenvalue has
absolute value ‖B‖. Then for any unit vector x such that xT v ≥

√
3/2, we have

|xTBx| ≥ 1

2
‖B‖.

(c) Let X be chosen uniformly from Sn−1. Then for any fixed unit vector v,

P
(
XT v ≥

√
3/2
)
≥ 1√

πn2n−1
.

(d) Let X be chosen uniformly from Sn−1, independent of Ā. Fix t > 0. Use parts (b) and (c) to
derive that

PĀ,X

(
|XT ĀX| ≥ 1

2
‖Ā‖, ‖Ā‖ ≥ t

)
≥ 1√

πn2n−1
PĀ
(
‖Ā‖ ≥ t

)
.

On the other hand, use part (a) to show that

PĀ,x

(
|xT Āx| ≥ 1

2
‖Ā‖, ‖Ā‖ ≥ t

)
≤ 2e−t

2/4.
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(e) Deduce that for any t > 0,

PĀ
(
‖Ā‖ ≥ t

)
≤
√
πn2ne−t

2/4,

and hence conclude that ‖Ā‖ = O(
√
n) except for an exponentially small probability.

Q4. The goal of this exercise is to provide an alternative way of showing the key step in the Stieltjes transform
proof of Wigner’s semicircle law for Gaussian Orthogonal Ensemble. The proof relies crucially on the
Gaussian integration by parts formula.

Let X = ((Xij)) be an n × n GOE matrix, i.e., Xij , i < j are i.i.d. N(0, 1) and Xii are i.i.d. N(0, 2),
independent of Xij , i < j. Let Ln be the ESD of Y := n−1/2X and let GLn

(z) :=
∫

(x−z)−1dLn(x), z ∈
H be the Stieltjes transform of Ln. Throughout the rest of the exercise, we fix z ∈ H.

(a) Prove the resolvent identity: for any n× n symmetric matrices A and B,

(A− zI)−1 − (B − zI)−1 = (B − zI)−1(B −A)(A− zI)−1.

(b) Using the resolvent identity show that

(i) (Y − zI)−1 = − 1
z + 1

zY (Y − zI)−1.

(ii) ∂(Y−zI)−1

∂Yij
= −(Y − zI)−1∆ij(Y − zI)−1, where ∆i,j := eie

T
j + eje

T
i if i 6= j and ∆i,i := eie

T
i

and e1, e2, . . . , en are the standard coordinate vectors of Rn.

(c) Using (b)(i) show that

1

n
E[tr(Y − zI)−1] = −1

z
+

1

nz
E[tr(Y (Y − zI)−1)] = −1

z
+

1

nz

∑
i,j

E[Yij(Y − zI)−1
ji ].

(d) Prove the Stein’s identity or Gaussian integration by parts formula.

Let Z ∼ N(0, σ2). Then for any differentiable function f which grows no faster than a polynomial
near ±∞, we have

E[Zf(Z)] = σ2E[f ′(Z)].

(e) Use Stein’s identity to show that∑
i,j

E[Yij(Y−zI)−1
ji ] = − 1

n
E
(∑

i

2((Y−zI)−1
ii )2+

∑
i 6=j

(
(Y−zI)−1

ji (Y−zI)−1
ij +(Y−zI)−1

jj (Y−zI)−1
ii

))
.

(f) Show that

1

n
E[tr(Y − zI)−1] = −1

z
− 1

n2z
E[tr(Y − zI)−2]− 1

z
E[( 1

n tr(Y − zI)−1)2].

(g) Argue that | 1n tr(Y − zI)−2| ≤ Im(z)−2 and conclude, assuming that Var(GLn
(z)) → 0 which we

had proved in the lecture using Azuma-Hoeffding, that as n→∞

(E[GLn
(z)])2 + zE[GLn

(z)] + 1→ 0.

Q5. Consider a n × n Jacobi matrix Tn whose all diagonal entries ak = 0 and off-diagonal entries bk = 1.
In other words, Tn is the adjacency matrix of a path graph with n vertices. Let µn be the empirical
spectral distribution of Tn.

(a) Show that for each fixed integer k ≥ 1, as n→∞,∫
xkdµn →

{
0 if k is odd,(
k
k/2

)
if k is even.

(b) Show that µn
d→ µ, where µ is the arc-sine law on [−2, 2] with density ρ(x) = 1

π
√

4−x2
, |x| ≤ 2.

(c) If νn is the spectral measure of Tn at e1, then compute the distributional limit of νn. What about
the spectral measure of Tn at ebn/2c?

2


